cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A361281 a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.

Original entry on oeis.org

1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2023

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
It appears that a(n) == 1 (mod 4) and a(5*n+2) == 0 (mod 5) for all n. More generally we conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k.
Let F(x) and G(x) be power series with integer coefficients with G(0) = 1. Define b(n) = n! * [x^n] F(x)*exp(x*G(x)^n). Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1, G(x) = 1 + x. Cf. A278070. (End)

Crossrefs

Main diagonal of A361277.

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(n*k, n-k)/k!);

Formula

a(n) = n! * [x^n] exp(x * (1+x)^n).
log(a(n)) ~ n*(2*log(n) - log(log(n)) - 1 - log(2) + log(log(n))/log(n) + 1/(2*log(n)) + log(2)/log(n) - 1/(8*log(n)^2)). - Vaclav Kotesovec, Mar 12 2023

A278069 a(n) = hypergeometric([n, -n], [], 1).

Original entry on oeis.org

1, 0, 3, -32, 465, -8544, 190435, -4996032, 150869313, -5155334720, 196677847971, -8286870547680, 382200680031313, -19152276311294112, 1036167879649219395, -60195061159370501504, 3737352803142621672705, -246970483156591884266112, 17306865588065164490357443
Offset: 0

Views

Author

Peter Luschny, Nov 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([n,-n], [], 1): seq(simplify(a(n)), n=0..18);
    # Alternatively:
    a := proc(n) option remember; `if`(n<2,1-n,
    ((2*n-1)*a(n-2)-8*(1+n*(n-2))*a(n-1))/(2*n-3)) end:
    seq(a(n), n=0..18);
  • Mathematica
    Table[HypergeometricPFQ[{n, -n}, {}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
    a={};For[n=0,n<19,n++,AppendTo[a,(-1)^n*Sum[(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}],{j,1,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)
  • Sage
    def a():
        a, b, c, d, h, e = 1, 0, 1, 8, 8, 0
        yield a
        while True:
            yield b
            e = c; c += 2
            a, b = b, (c*a - h*b)//e
            d += 16; h += d
    A278069 = a()
    [next(A278069) for _ in range(19)]

Formula

a(-n) = a(n).
a(n) = n! [x^n] (2*x*exp(h(x)/2))/(4*x-h(x)) with h(x) = sqrt(4*x+1)-1.
a(n) ~ (-1)^n * 2^(2*n-1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Nov 10 2016
(-9-3*n)*a(n+1)+(12*n^2+53*n+52)*a(n+2)+(4*n^2+33*n+63)*a(n+3)+(n+4)*a(n+4) = 0. - Robert Israel, Nov 10 2016
a(n) = ((2*n-1)*a(n-2)-8*(1+n*(n-2))*a(n-1))/(2*n-3) for n>=2. - Peter Luschny, Nov 10 2016
a(n) = n! * [x^n] exp(x)/(1 + x)^n. - Ilya Gutkovskiy, Apr 07 2018

A278071 Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.

Original entry on oeis.org

1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0

Views

Author

Peter Luschny, Nov 10 2016

Keywords

Examples

			Triangle starts:
.       1,
.       1,      -1,
.       6,      -4,     1,
.      60,     -36,     9,    -1,
.     840,    -480,   120,   -16,   1,
.   15120,   -8400,  2100,  -300,  25,  -1,
.  332640, -181440, 45360, -6720, 630, -36, 1,
...
		

Crossrefs

Cf. A278069 (x=1, row sums up to sign), A278070 (x=-1).
T(n,0) = Pochhammer(n, n) (cf. A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf. A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf. A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf. A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf. A083374).

Programs

  • Maple
    p := n -> (-1)^n*hypergeom([n, -n], [], x):
    ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
    # Alternatively the polynomials by recurrence:
    P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
    ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));
    sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;
    # Or by generalized Laguerre polynomials:
    P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):
    for n from 0 to 6 do simplify(P(n,x)) od;
  • Mathematica
    row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
    (* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)

Formula

The P(n,x) are orthogonal polynomials. They satisfy the recurrence
P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.
In terms of generalized Laguerre polynomials (see the Krall and Fink link):
P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).

A370706 Triangle read by rows: T(n, k) = binomial(n, k) * Pochhammer(n, k).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 1, 9, 36, 60, 1, 16, 120, 480, 840, 1, 25, 300, 2100, 8400, 15120, 1, 36, 630, 6720, 45360, 181440, 332640, 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640, 1, 64, 2016, 40320, 554400, 5322240, 34594560, 138378240, 259459200
Offset: 0

Views

Author

Peter Luschny, Feb 28 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  4,    6;
  [3] 1,  9,   36,    60;
  [4] 1, 16,  120,   480,    840;
  [5] 1, 25,  300,  2100,   8400,   15120;
  [6] 1, 36,  630,  6720,  45360,  181440,  332640;
  [7] 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640;
		

Crossrefs

Cf. A370707, A000407 (main diagonal), A278070 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*pochhammer(n, k):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_, k_] := Binomial[n, k] Pochhammer[n, k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = A370707(n, k) / k!.
T(n, n) = Pochhammer(n, n) for n >= 0 (which is different from A000407(n)).

A361036 a(n) = n! * [x^n] (1 + x)^n * exp(x*(1 + x)^n).

Original entry on oeis.org

1, 2, 11, 124, 2225, 56546, 1928707, 85029596, 4687436609, 314255427490, 25077179715131, 2343489559096412, 253185531592066801, 31279831940279656514, 4376923336721600128115, 687815536092999747916156, 120491486068612766739548417, 23378730923206887237941740226
Offset: 0

Views

Author

Peter Bala, Mar 13 2023

Keywords

Comments

We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x)^n)*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k.

Crossrefs

Programs

  • Maple
    seq( n!*add(add(binomial(n,i+j)*binomial(j*n,i)/j!, j = 0..n-i), i = 0..n), n = 0..20);
  • Mathematica
    Table[n! * Sum[Sum[Binomial[n, i + j]*Binomial[j*n, i]/j!, {j, 0, n - i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2023 *)

Formula

a(n) = n!*Sum_{i = 0..n} Sum_{j = 0..n-i} binomial(n,i+j)*binomial(j*n,i)/j!.
a(n) ~ n! * exp(r*(1+r)^n) * (1+r)^(n/2 + 1) / (sqrt(2*Pi*n*(3 + n*r)) * r^(n+1)), where r = 2*LambertW(n/2)/n - (n + 2*LambertW(n/2)) * (n - 4*LambertW(n/2)^3) / (n^3 * (3 + 2*LambertW(n/2))). - Vaclav Kotesovec, Mar 28 2023
Showing 1-5 of 5 results.