A361281
a(n) = n! * Sum_{k=0..n} binomial(n*k,n-k)/k!.
Original entry on oeis.org
1, 1, 5, 37, 481, 10001, 288901, 10820965, 511186817, 29843419681, 2106779832901, 176180844038981, 17165338119936865, 1924030148121500017, 245630480526435293381, 35409038825312233143301, 5719025066628373334423041, 1027649751647068260334391105
Offset: 0
A278069
a(n) = hypergeometric([n, -n], [], 1).
Original entry on oeis.org
1, 0, 3, -32, 465, -8544, 190435, -4996032, 150869313, -5155334720, 196677847971, -8286870547680, 382200680031313, -19152276311294112, 1036167879649219395, -60195061159370501504, 3737352803142621672705, -246970483156591884266112, 17306865588065164490357443
Offset: 0
-
a := n -> hypergeom([n,-n], [], 1): seq(simplify(a(n)), n=0..18);
# Alternatively:
a := proc(n) option remember; `if`(n<2,1-n,
((2*n-1)*a(n-2)-8*(1+n*(n-2))*a(n-1))/(2*n-3)) end:
seq(a(n), n=0..18);
-
Table[HypergeometricPFQ[{n, -n}, {}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
a={};For[n=0,n<19,n++,AppendTo[a,(-1)^n*Sum[(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}],{j,1,n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)
-
def a():
a, b, c, d, h, e = 1, 0, 1, 8, 8, 0
yield a
while True:
yield b
e = c; c += 2
a, b = b, (c*a - h*b)//e
d += 16; h += d
A278069 = a()
[next(A278069) for _ in range(19)]
A278071
Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.
Original entry on oeis.org
1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0
Triangle starts:
. 1,
. 1, -1,
. 6, -4, 1,
. 60, -36, 9, -1,
. 840, -480, 120, -16, 1,
. 15120, -8400, 2100, -300, 25, -1,
. 332640, -181440, 45360, -6720, 630, -36, 1,
...
- H. L. Krall and O. Fink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Herbert E. Salzer, Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).
T(n,0) = Pochhammer(n, n) (cf.
A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf.
A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf.
A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf.
A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf.
A083374).
-
p := n -> (-1)^n*hypergeom([n, -n], [], x):
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
# Alternatively the polynomials by recurrence:
P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));
sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;
# Or by generalized Laguerre polynomials:
P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):
for n from 0 to 6 do simplify(P(n,x)) od;
-
row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
(* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)
A370706
Triangle read by rows: T(n, k) = binomial(n, k) * Pochhammer(n, k).
Original entry on oeis.org
1, 1, 1, 1, 4, 6, 1, 9, 36, 60, 1, 16, 120, 480, 840, 1, 25, 300, 2100, 8400, 15120, 1, 36, 630, 6720, 45360, 181440, 332640, 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640, 1, 64, 2016, 40320, 554400, 5322240, 34594560, 138378240, 259459200
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 4, 6;
[3] 1, 9, 36, 60;
[4] 1, 16, 120, 480, 840;
[5] 1, 25, 300, 2100, 8400, 15120;
[6] 1, 36, 630, 6720, 45360, 181440, 332640;
[7] 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640;
-
T := (n, k) -> binomial(n, k)*pochhammer(n, k):
seq(seq(T(n, k), k = 0..n), n = 0..8);
-
T[n_, k_] := Binomial[n, k] Pochhammer[n, k];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A361036
a(n) = n! * [x^n] (1 + x)^n * exp(x*(1 + x)^n).
Original entry on oeis.org
1, 2, 11, 124, 2225, 56546, 1928707, 85029596, 4687436609, 314255427490, 25077179715131, 2343489559096412, 253185531592066801, 31279831940279656514, 4376923336721600128115, 687815536092999747916156, 120491486068612766739548417, 23378730923206887237941740226
Offset: 0
-
seq( n!*add(add(binomial(n,i+j)*binomial(j*n,i)/j!, j = 0..n-i), i = 0..n), n = 0..20);
-
Table[n! * Sum[Sum[Binomial[n, i + j]*Binomial[j*n, i]/j!, {j, 0, n - i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2023 *)
Showing 1-5 of 5 results.
Comments