cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278070 a(n) = hypergeometric([n, -n], [], -1).

Original entry on oeis.org

1, 2, 11, 106, 1457, 25946, 566827, 14665106, 438351041, 14862109042, 563501581931, 23624177026682, 1085079390005041, 54185293223976266, 2922842896378005707, 169366580127359119906, 10492171932362920604417, 691986726674000405367266, 48408260338825019327539531
Offset: 0

Views

Author

Peter Luschny, Nov 10 2016

Keywords

Comments

From Peter Bala, Mar 12 2023: (Start)
We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 1, 1, 4, 2, 1, 2, 4, 1, 1, 4, 2, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x))*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k. The present sequence is the case F(x) = 1/(1 - x), G(x) = 1. Cf. A361281. (End)

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18);
    # Alternatively:
    a := proc(n) option remember; `if`(n<2, n+1,
    ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end:
    seq(a(n), n=0..18);
  • Mathematica
    Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
  • Maxima
    a(n):=n!*sum(binomial(2*n-i-1,n-i)/i!,i,0,n); /* Vladimir Kruchinin, Nov 23 2016 */
  • Sage
    def a():
        a, b, c, d, h, e = 1, 2, 1, 8, 4, 0
        yield a
        while True:
            yield b
            e = c; c += 2
            a, b = b, (c*a + h*b)//e
            d += 16; h += d
    A278070 = a()
    [next(A278070) for _ in range(19)]
    

Formula

a(-n) = a(n).
a(n) = n! [x^n] exp((1-h(x))/2)*(1+h(x))/(2*h(x)) with h(x) = sqrt(1-4*x).
a(n) = ((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3) for n>=2.
a(n) ~ 2^(2*n-1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Nov 10 2016
a(n) = n!*Sum_{i=0..n}(binomial(2*n-i-1,n-i)/i!). - Vladimir Kruchinin, Nov 23 2016
a(n) = n! * [x^n] exp(x)/(1 - x)^n. - Ilya Gutkovskiy, Sep 21 2017

A278071 Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.

Original entry on oeis.org

1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0

Views

Author

Peter Luschny, Nov 10 2016

Keywords

Examples

			Triangle starts:
.       1,
.       1,      -1,
.       6,      -4,     1,
.      60,     -36,     9,    -1,
.     840,    -480,   120,   -16,   1,
.   15120,   -8400,  2100,  -300,  25,  -1,
.  332640, -181440, 45360, -6720, 630, -36, 1,
...
		

Crossrefs

Cf. A278069 (x=1, row sums up to sign), A278070 (x=-1).
T(n,0) = Pochhammer(n, n) (cf. A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf. A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf. A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf. A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf. A083374).

Programs

  • Maple
    p := n -> (-1)^n*hypergeom([n, -n], [], x):
    ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
    # Alternatively the polynomials by recurrence:
    P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
    ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));
    sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;
    # Or by generalized Laguerre polynomials:
    P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):
    for n from 0 to 6 do simplify(P(n,x)) od;
  • Mathematica
    row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
    (* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)

Formula

The P(n,x) are orthogonal polynomials. They satisfy the recurrence
P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.
In terms of generalized Laguerre polynomials (see the Krall and Fink link):
P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).
Showing 1-2 of 2 results.