A278070
a(n) = hypergeometric([n, -n], [], -1).
Original entry on oeis.org
1, 2, 11, 106, 1457, 25946, 566827, 14665106, 438351041, 14862109042, 563501581931, 23624177026682, 1085079390005041, 54185293223976266, 2922842896378005707, 169366580127359119906, 10492171932362920604417, 691986726674000405367266, 48408260338825019327539531
Offset: 0
-
a := n -> hypergeom([n, -n], [], -1): seq(simplify(a(n)), n=0..18);
# Alternatively:
a := proc(n) option remember; `if`(n<2, n+1,
((2*n-1)*a(n-2) + 4*(n*(2*n-4)+1)*a(n-1))/(2*n-3)) end:
seq(a(n), n=0..18);
-
Table[HypergeometricPFQ[{n, -n}, {}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2016 *)
-
a(n):=n!*sum(binomial(2*n-i-1,n-i)/i!,i,0,n); /* Vladimir Kruchinin, Nov 23 2016 */
-
def a():
a, b, c, d, h, e = 1, 2, 1, 8, 4, 0
yield a
while True:
yield b
e = c; c += 2
a, b = b, (c*a + h*b)//e
d += 16; h += d
A278070 = a()
[next(A278070) for _ in range(19)]
A278071
Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.
Original entry on oeis.org
1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0
Triangle starts:
. 1,
. 1, -1,
. 6, -4, 1,
. 60, -36, 9, -1,
. 840, -480, 120, -16, 1,
. 15120, -8400, 2100, -300, 25, -1,
. 332640, -181440, 45360, -6720, 630, -36, 1,
...
- H. L. Krall and O. Fink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Herbert E. Salzer, Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).
T(n,0) = Pochhammer(n, n) (cf.
A000407).
T(n,1) = -(n+1)*(2n)!/n! (cf.
A002690).
T(n,2) = (n+2)*(2n+1)*(2n-1)!/(n-1)! (cf.
A002691).
T(n,n-1) = (-1)^(n+1)*n^2 for n>=1 (cf.
A000290).
T(n,n-2) = n^2*(n^2-1)/2 for n>=2 (cf.
A083374).
-
p := n -> (-1)^n*hypergeom([n, -n], [], x):
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
# Alternatively the polynomials by recurrence:
P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3));
sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od;
# Or by generalized Laguerre polynomials:
P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x):
for n from 0 to 6 do simplify(P(n,x)) od;
-
row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
(* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)
Showing 1-2 of 2 results.
Comments