A060540
Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 10, 35, 126, 462, ...
1, 15, 280, 5775, 126126, 2858856, ...
1, 105, 15400, 2627625, 488864376, 96197645544, ...
1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
...
- Seiichi Manyama, Antidiagonals n = 1..50, flattened (first 20 antidiagonals from Harry J. Smith)
- Tom Copeland, Calculus, Combinatorics, and Geometry Underlying OEIS A060540, and the Exponential Formula, 2021.
- Nattawut Phetmak and Jittat Fakcharoenphol, Uniformly Generating Derangements with Fixed Number of Cycles in Polynomial Time, Thai J. Math. (2023) Vol. 21, No. 4, 899-915. See pp. 901, 914.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 13.
Cf.
A000217,
A000292,
A000332,
A000389,
A000579,
A000580,
A007318,
A036040,
A099174,
A133314,
A132440,
A135278 (associations in Copeland link).
-
T[n_, k_] := (n*k)!/(k!^n*n!);
Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
-
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009
A096126
a(n) is the least integer of the form (n^2)!/(n!)^k.
Original entry on oeis.org
1, 3, 280, 2627625, 5194672859376, 5150805819130303332, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000
Offset: 1
a(4) = 16!/(4!)^5 = 2627625 which is not further divisible by 24.
-
a(n)={if(n==1, 1, (n^2)!/(n!^valuation((n^2)!,n!)))} \\ Andrew Howroyd, Nov 09 2019
A068740
Result after dividing (n^n)! as many times as possible by n!.
Original entry on oeis.org
1, 1, 3, 833712928048000000
Offset: 0
a(3)=833712928048000000 since 3!=6 and (3^3)!=27!=10888869450418352160768000000 which is divisible by 6^13=13060694016 but not 6^14=78364164096.
A096127
a(n) is the largest k such that (n^2)!/(n!)^k is an integer.
Original entry on oeis.org
3, 4, 5, 6, 8, 8, 9, 10, 12, 12, 14, 14, 16, 18, 17, 18, 20, 20, 22, 24, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 33, 35, 36, 38, 38, 38, 40, 42, 42, 42, 44, 44, 46, 48, 48, 48, 50, 50, 52, 54, 55, 54, 56, 58, 58, 60, 60, 60, 62, 62, 64, 66, 65, 67, 68, 68, 70, 72, 73, 72, 74, 74
Offset: 2
a(6) = 8 as 36!/(6!)^8 is an integer which is not further divisible by 720.
-
f[n_] := Block[{k = n}, While[ IntegerQ[(n^2)!/n!^k], k++ ]; k - 1]; Table[ f[n], {n, 75}] (* Robert G. Wilson v, Jul 03 2004 *)
A370364
Number of partitions of [n^2] into n sets of size n having at least one set of consecutive numbers whose maximum (if n>0) is a multiple of n.
Original entry on oeis.org
0, 1, 1, 28, 22893, 2443061876, 68542265471953355, 833412961429901104030214430, 6514551431426932053792271970458170132097, 45458343253887079540702419310885199704811913950207054152, 375236832464739513549091449370258959406125572044428827214970469920572831639
Offset: 0
a(1) = 1: 1.
a(2) = 1: 12|34.
a(3) = 28: 123|456|789, 123|457|689, 123|458|679, 123|459|678, 123|467|589, 123|468|579, 123|469|578, 123|478|569, 123|479|568, 123|489|567, 124|356|789, 125|346|789, 126|345|789, 127|389|456, 128|379|456, 129|378|456, 134|256|789, 135|246|789, 136|245|789, 137|289|456, 138|279|456, 139|278|456, 145|236|789, 146|235|789, 156|234|789, 178|239|456, 179|238|456, 189|237|456.
A370367
Number of partitions of [n^2] into n sets of size n having no set of consecutive numbers whose maximum (if k>n) is a multiple of n.
Original entry on oeis.org
1, 0, 2, 252, 2604732, 5192229797500, 3708511647508346445685, 1461034020983306348666869275743970, 450538781472323736156501178553451135548626208528, 146413934881756079673947032145931312279368061228255235014292945848
Offset: 0
A246048
Numbers for which (n^2)! is divisible by n!^n*(2n)!.
Original entry on oeis.org
6, 12, 14, 15, 21, 22, 24, 26, 28, 30, 35, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 69, 70, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99
Offset: 1
-
max_k(n)=for(k=1,m=n,Mod((n*m)!,m!^n*(k*n)!) && return(k-1)) \\ returns the maximal k for m=n.
for(n=1,99,a(n)>1&&print1(n,",")) \\ prints this sequence
A361948
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, ...
[1] 1, 1, 1, 1, 1, 1, ...
[2] 1, 1, 3, 15, 105, 945, ... A001147
[3] 1, 1, 10, 280, 15400, 1401400, ... A025035
[4] 1, 1, 35, 5775, 2627625, 2546168625, ... A025036
[5] 1, 1, 126, 126126, 488864376, 5194672859376, ... A025037
[6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ... A025038
.
Triangle A(n-k, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 1, 1;
[3] 1, 1, 1, 1;
[4] 1, 1, 3, 1, 1;
[5] 1, 1, 10, 15, 1, 1;
[6] 1, 1, 35, 280, 105, 1, 1;
- Cyril Banderier, Philippe Marchal, and Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
- Antoine Chambert-Loir, Combinatorics of partitions, blog post 2024.
- Alexander Karpov, Generalized knockout tournament seedings, International Journal of Computer Science in Sport, vol. 17(2), 2018.
-
A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1):
seq(seq(A(n-k, k), k = 0..n), n = 0..9);
# Alternative, using recursion:
A := proc(n, k) local P; P := proc(n, k) option remember;
if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)*
P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end:
seq(print(seq(A(n, k), k = 0..5)), n = 0..6);
# Alternative, using exponential generating function:
egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n):
row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6):
for n from 0 to 6 do [n], row(n) od; # Peter Luschny, Aug 15 2024
-
A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
-
def Arow(n, size):
if n == 0: return [1] * size
return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)]
for n in range(7): print(Arow(n, 7))
# Alternative, using exponential generating function:
def SetPolyLeadCoeff(m, n):
x, z = var("x, z")
if m == 0: return 1
w = exp(2 * pi * I / m)
o = sum(exp(z * w ** k) for k in range(m)) / m
t = exp(x * (o - 1)).taylor(z, 0, m*n)
p = factorial(m*n) * t.coefficient(z, m*n)
return p.leading_coefficient(x)
for m in range(7):
print([SetPolyLeadCoeff(m, k) for k in range(6)])
A264410
G.f.: Sum_{n>=0} (n^2)!/n!^(n+1) * x^n / (1-x)^(n^2+1).
Original entry on oeis.org
1, 2, 6, 299, 2630475, 5194717544512, 3708580324835714831258, 1461034854533485247412937306733067, 450538787986948219326155652866541933427447505845, 146413934927214452212855330835382443952802497537220927026261910086, 64954656894649578286072291957497800888821547620744164639686415856667115998603764278502
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 1714*x^3 + 63079895*x^4 + 623361815288736*x^5 +...
where
A(x) = 1/(1-x) + x/(1-x)^2 + (4!/2!^3)*x^2/(1-x)^5 + (9!/3!^4)*x^3/(1-x)^10 + (16!/4!^5)*x^4/(1-x)^17 + (25!/5!^6)*x^5/(1-x)^26 +...
Equivalently,
A(x) = 1/(1-x) + x/(1-x)^2 + 3*x^2/(1-x)^5 + 280*x^3/(1-x)^10 + 2627625*x^4/(1-x)^17 + 5194672859376*x^5/(1-x)^26 +...+ A057599(n)*x^n/(1-x)^(n^2+1) +...
Illustrate formula a(n) = Sum_{k=0..n} (1/k!)*Product_{j=0..k-1} C(n+j*k,k) for initial terms:
a(0) = 1;
a(1) = 1 + C(1,1);
a(2) = 1 + C(2,1) + C(2,2)*C(4,2)/2!;
a(3) = 1 + C(3,1) + C(3,2)*C(5,2)/2! + C(3,3)*C(6,3)*C(9,3)/3!;
a(4) = 1 + C(4,1) + C(4,2)*C(6,2)/2! + C(4,3)*C(7,3)*C(10,3)/3! + C(4,4)*C(8,4)*C(12,4)*C(16,4)/4!;
a(5) = 1 + C(5,1) + C(5,2)*C(7,2)/2! + C(5,3)*C(8,3)*C(11,3)/3! + C(5,4)*C(9,4)*C(13,4)*C(17,4)/4! + C(5,5)*C(10,5)*C(15,5)*C(20,5)*C(25,5)/5!; ...
which numerically equals:
a(0) = 1;
a(1) = 1 + 1 = 2;
a(2) = 1 + 2 + 1*6/2! = 6;
a(3) = 1 + 3 + 3*10/2! + 1*20*84/3! = 299;
a(4) = 1 + 4 + 6*15/2! + 4*35*120/3! + 1*70*495*1820/4! = 2630475;
a(5) = 1 + 5 + 10*21/2! + 10*56*165/3! + 5*126*715*2380/4! + 1*252*3003*15504*53130/5! = 5194717544512; ...
-
Table[Sum[Product[Binomial[n+j*k, k], {j, 0, k-1}]/k!, {k, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Dec 09 2015 *)
-
{a(n)=polcoeff(sum(m=0, n, (m^2)!/m!^(m+1)*x^m/(1-x +x*O(x^n))^(m^2+1)), n)}
for(n=0, 15, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, (1/k!) * prod(j=0, k-1, binomial(n+j*k, k)) )}
for(n=0, 15, print1(a(n), ", "))
A263884
a(n) = (m(n)*n)! / (n!)^(m(n)+1), where m(n) is the largest prime power <= n.
Original entry on oeis.org
1, 3, 280, 2627625, 5194672859376, 1903991899429620, 1461034854396267778567973305958400, 450538787986875167583433232345723106006796340625, 146413934927214422927834111686633731590253260933067148964500000000, 3752368324673960479843764075706478869144868251518618794695144146928706880
Offset: 1
The largest prime power <= 6 is m(6) = 5, so a(6) = (5*6)! / (6!)^(5+1) = 30! / (6!)^6 = 1903991899429620.
- Howard Carry Morris and Daniel Fritze, Problem 1948, Math. Mag., 88 (2015), 288-289.
Showing 1-10 of 10 results.
Comments