cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370366 Number A(n,k) of partitions of [k*n] into n sets of size k having no set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 9, 8, 0, 0, 1, 0, 34, 252, 60, 0, 0, 1, 0, 125, 5672, 14337, 544, 0, 0, 1, 0, 461, 125750, 2604732, 1327104, 6040, 0, 0, 1, 0, 1715, 2857472, 488360625, 2533087904, 182407545, 79008, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Examples

			A(2,3) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Square array A(n,k) begins:
  1, 1,   1,       1,          1,             1, ...
  0, 0,   0,       0,          0,             0, ...
  0, 0,   2,       9,         34,           125, ...
  0, 0,   8,     252,       5672,        125750, ...
  0, 0,  60,   14337,    2604732,     488360625, ...
  0, 0, 544, 1327104, 2533087904, 5192229797500, ...
		

Crossrefs

Columns k=0+1,2-3 give: A000007, A053871, A370357.
Rows n=0-2 give: A000012, A000004, A010763(n-1) for k>0.
Main diagonal gives A370367.
Antidiagonal sums give A370368.

Programs

  • Maple
    A:= proc(n, k) `if`(k=0,`if`(n=0, 1, 0), add(
          (-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = A060540(n,k) - A370363(n,k) for n,k >= 1.

A370364 Number of partitions of [n^2] into n sets of size n having at least one set of consecutive numbers whose maximum (if n>0) is a multiple of n.

Original entry on oeis.org

0, 1, 1, 28, 22893, 2443061876, 68542265471953355, 833412961429901104030214430, 6514551431426932053792271970458170132097, 45458343253887079540702419310885199704811913950207054152, 375236832464739513549091449370258959406125572044428827214970469920572831639
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 12|34.
a(3) = 28: 123|456|789, 123|457|689, 123|458|679, 123|459|678, 123|467|589, 123|468|579, 123|469|578, 123|478|569, 123|479|568, 123|489|567, 124|356|789, 125|346|789, 126|345|789, 127|389|456, 128|379|456, 129|378|456, 134|256|789, 135|246|789, 136|245|789, 137|289|456, 138|279|456, 139|278|456, 145|236|789, 146|235|789, 156|234|789, 178|239|456, 179|238|456, 189|237|456.
		

Crossrefs

Main diagonal of A370363.

Programs

  • Maple
    a:= n-> add((-1)^(n-j+1)*binomial(n, j)*(n*j)!/(j!*n!^j), j=0..n-1):
    seq(a(n), n=0..10);

Formula

a(n) = Sum_{j=0..n-1} (-1)^(n-j+1)*binomial(n,j)*(n*j)!/(j!*n!^j).
a(n) = A370363(n,n).
a(n) = A057599(n) - A370367(n).
Showing 1-2 of 2 results.