cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060540 Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

The Copeland link gives the associations of this entry with the operator calculus of Appell Sheffer polynomials, the combinatorics of simple set partitions encoded in the Faa di Bruno formula for composition of analytic functions (formal Taylor series), the Pascal matrix, and the geometry of the n-dimensional simplices (hypertriangles, or hypertetrahedra). These, in turn, are related to simple instances of the application of the exponential formula / principle / schema giving the number of not-necessarily-connected objects composed from an ensemble of connected objects. - Tom Copeland, Jun 09 2021

Examples

			Array begins:
  1,   1,       1,          1,             1,                 1, ...
  1,   3,      10,         35,           126,               462, ...
  1,  15,     280,       5775,        126126,           2858856, ...
  1, 105,   15400,    2627625,     488864376,       96197645544, ...
  1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
  ...
		

Crossrefs

Main diagonal is A057599.
Related to A057599, see also A096126 and A246048.
Cf. A060358, A361948 (includes row/col 0).
Cf. A000217, A000292, A000332, A000389, A000579, A000580, A007318, A036040, A099174, A133314, A132440, A135278 (associations in Copeland link).

Programs

  • Mathematica
    T[n_, k_] := (n*k)!/(k!^n*n!);
    Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

T(n,k) = (n*k)!/(k!^n*n!) = T(n-1,k)*A060543(n,k) = A060538(n,k)/k!.
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014

Extensions

Definition reworded by M. F. Hasler, Aug 23 2014

A096127 a(n) is the largest k such that (n^2)!/(n!)^k is an integer.

Original entry on oeis.org

3, 4, 5, 6, 8, 8, 9, 10, 12, 12, 14, 14, 16, 18, 17, 18, 20, 20, 22, 24, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 33, 35, 36, 38, 38, 38, 40, 42, 42, 42, 44, 44, 46, 48, 48, 48, 50, 50, 52, 54, 55, 54, 56, 58, 58, 60, 60, 60, 62, 62, 64, 66, 65, 67, 68, 68, 70, 72, 73, 72, 74, 74
Offset: 2

Views

Author

Amarnath Murthy, Jul 03 2004

Keywords

Comments

Conjecture: a(n)=n+1 only when n is prime or a power of a prime. [Verified for n=2..5000. - Amiram Eldar, Apr 06 2021]

Examples

			a(6) = 8 as 36!/(6!)^8 is an integer which is not further divisible by 720.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = n}, While[ IntegerQ[(n^2)!/n!^k], k++ ]; k - 1]; Table[ f[n], {n, 75}] (* Robert G. Wilson v, Jul 03 2004 *)

Extensions

Edited by Don Reble and Robert G. Wilson v, Jul 04 2004

A246048 Numbers for which (n^2)! is divisible by n!^n*(2n)!.

Original entry on oeis.org

6, 12, 14, 15, 21, 22, 24, 26, 28, 30, 35, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 69, 70, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99
Offset: 1

Views

Author

M. F. Hasler, Aug 23 2014

Keywords

Comments

In general, (n*m)! is divisible by m!^n*n!, cf. A060540 for the quotients. It was asked when it is also divisible by m!^n*(kn)! for some k>1. The present sequence answers this for the special case m=n. For the values m=n=52,69,75,77,78,92,95,... one can take k=3; m=n=120 is the least case where one can take k=4.
Farideh Firoozbakht observes that all terms are composite numbers. The comment in A057599 and conjecture in A096126 seem to confirm that there are no primes nor powers of primes in this sequence.

Programs

  • PARI
    max_k(n)=for(k=1,m=n,Mod((n*m)!,m!^n*(k*n)!) && return(k-1)) \\ returns the maximal k for m=n.
    for(n=1,99,a(n)>1&&print1(n,",")) \\ prints this sequence

A244443 Smallest integer m > 1 such that m!^(m + n) divides (m^2)!.

Original entry on oeis.org

2, 6, 15, 77, 185, 187, 475, 3820, 4043, 4090, 11231, 30589, 57023, 126815, 131055, 983032, 983033, 2617339, 4046839, 11534206, 11534207, 65011702, 66777087, 368279551, 469745405, 973061887, 1064828671
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 24 2014

Keywords

Comments

The constraint m > 1 is necessary because (1^2)! = 1.
The motivation for this sequence came from comments on the sequence A246048 by M. F. Hasler.
The integer (3820^2)!/(3820!)^3828 related to a(8) has 52166326 digits, so it isn't easy to find more terms.
a(28) > 1.5 * 10^9. - Hiroaki Yamanouchi, Sep 29 2014

Examples

			a(4) = 77 because 77!^(77 + 4) divides (77^2)! and 77 is the smallest integer m, m > 1, with this property.
		

Crossrefs

Programs

  • PARI
    for(n=1, 7, m=2; while((m^2)!%(m!^(m+n)), m++); print1(m", ")) \\ Jens Kruse Andersen, Aug 31 2014
    
  • PARI
    n=f=1; for(m=2, 5000, f*=m; s=m^2; forprime(p=2, m, e=0; b=p; while(b<=s, e+=s\b; b*=p); if(valuation(f,p)*(m+n)>e, next(2))); print1(m", "); n++) \\ Faster program. Jens Kruse Andersen, Aug 31 2014

Extensions

a(9)-a(13) from Jens Kruse Andersen, Aug 31 2014
a(14)-a(27) from Hiroaki Yamanouchi, Sep 29 2014
Showing 1-4 of 4 results.