A006000
a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4.
Original entry on oeis.org
1, 4, 12, 28, 55, 96, 154, 232, 333, 460, 616, 804, 1027, 1288, 1590, 1936, 2329, 2772, 3268, 3820, 4431, 5104, 5842, 6648, 7525, 8476, 9504, 10612, 11803, 13080, 14446, 15904, 17457, 19108, 20860, 22716, 24679, 26752, 28938, 31240, 33661, 36204, 38872, 41668, 44595, 47656, 50854, 54192
Offset: 0
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- William A. Tedeschi, Table of n, a(n) for n = 0..10000
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-382. [See p. 301].
- Jon Perry, Weighted Hamiltonian Cycles
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Polygonal Number
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A143689
a(n) = (3*n^2 - n + 2)/2.
Original entry on oeis.org
1, 2, 6, 13, 23, 36, 52, 71, 93, 118, 146, 177, 211, 248, 288, 331, 377, 426, 478, 533, 591, 652, 716, 783, 853, 926, 1002, 1081, 1163, 1248, 1336, 1427, 1521, 1618, 1718, 1821, 1927, 2036, 2148, 2263, 2381, 2502, 2626, 2753, 2883, 3016, 3152, 3291
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036 [math.CO], 2015-2016.
- John Elias, Trisected Pentagonal Numbers
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a143689 n = n*(3*n-1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
-
Table[(3n^2-n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,2,6},50] (* Harvey P. Dale, May 05 2014 *)
-
makelist(binomial(n, 2) + n^2 + 1, n, 0, 100); /* Franck Maminirina Ramaharo, Mar 01 2018 */
-
a(n)=(3*n^2-n+2)/2 \\ Charles R Greathouse IV, Oct 07 2015
A327622
Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 3, 1, 0, 1, 1, 7, 8, 5, 1, 0, 1, 1, 9, 16, 15, 8, 1, 0, 1, 1, 11, 27, 35, 28, 10, 1, 0, 1, 1, 13, 41, 69, 73, 49, 13, 1, 0, 1, 1, 15, 58, 121, 160, 170, 86, 18, 1, 0, 1, 1, 17, 78, 195, 311, 460, 357, 156, 25, 1
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 3, 8, 16, 27, 41, 58, 78, 101, ...
1, 5, 15, 35, 69, 121, 195, 295, 425, ...
1, 8, 28, 73, 160, 311, 553, 918, 1443, ...
1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ...
1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2020, after Maple *)
A167565
A triangle related to the a(n) formulas for the rows of the ED2 array A167560.
Original entry on oeis.org
1, 2, 0, 3, 1, 2, 4, 4, 16, 0, 5, 10, 67, 14, 24, 6, 20, 202, 124, 368, 0, 7, 35, 497, 601, 2736, 444, 720, 8, 56, 1064, 2120, 13712, 6464, 16896, 0, 9, 84, 2058, 6096, 53121, 48876, 186732, 25584, 40320, 10, 120, 3684, 15168, 171258, 257640, 1350296
Offset: 1
Row 1: a(n) = 1.
Row 2: a(n) = 2*n + 0.
Row 3: a(n) = 3*n^2 + 1*n + 2.
Row 4: a(n) = 4*n^3 + 4*n^2 + 16*n + 0.
Row 5: a(n) = 5*n^4 + 10*n^3 + 67*n^2 + 14*n + 24.
Row 6: a(n) = 6*n^5 + 20*n^4 + 202*n^3 + 124*n^2 + 368*n + 0.
Row 7: a(n) = 7*n^6 + 35*n^5 + 497*n^4 + 601*n^3 + 2736*n^2 + 444*n + 720.
Row 8: a(n) = 8*n^7 + 56*n^6 + 1064*n^5 + 2120*n^4 + 13712*n^3 + 6464*n^2 + 16896*n + 0.
Row 9: a(n) = 9*n^8 + 84*n^7 + 2058*n^6 + 6096*n^5 + 53121*n^4 + 48876*n^3 + 186732*n^2 + 25584*n + 40320.
Row 10: a(n) = 10*n^9 + 120*n^8 + 3684*n^7 + 15168*n^6 + 171258*n^5 + 257640*n^4 + 1350296*n^3 + 533472*n^2 + 1297152*n + 0.
A005359 equals the first right hand triangle column.
A242357
Crescendo trapezoidal.
Original entry on oeis.org
1, 1, 2, 2, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7
Offset: 1
. Initial values
. seen trapezoidal: 666666
. 55555 5......5
. 4444 4.....4 4........4
. 333 3....3 3.......3 3..........3
. 22 2...2 2......2 2.........2 2............2
. 1 1..1 1.....1 1........1 1...........1 1..............1 .
-
import Data.List (inits)
a242357 n = a242357_list !! (n-1)
a242357_list = concatMap f $ tail $ inits [1..] where
f us = (init us) ++ (take v [v, v ..]) ++ vs
where (v:vs) = reverse us
-
Table[Join[Range[n-1],PadRight[{},n,n],Range[n-1,1,-1]],{n,9}]//Flatten (* Harvey P. Dale, Oct 23 2020 *)
A164845
a(n) = (6 + 10*n + 5*n^2 + n^3)/2.
Original entry on oeis.org
3, 11, 27, 54, 95, 153, 231, 332, 459, 615, 803, 1026, 1287, 1589, 1935, 2328, 2771, 3267, 3819, 4430, 5103, 5841, 6647, 7524, 8475, 9503, 10611, 11802, 13079, 14445, 15903, 17456, 19107, 20859, 22715, 24678, 26751, 28937, 31239, 33660, 36203, 38871
Offset: 0
-
[3+5*n+5*n^2/2+n^3/2: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
-
Table[(6 + 10*n + 5*n^2 + n^3)/2, {n,0,50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {3, 11, 27, 54}, 50] (* G. C. Greubel, Apr 21 2018 *)
-
for(n=0, 50, print1((6+10*n+5*n^2+n^3)/2, ", ")) \\ G. C. Greubel, Apr 21 2018
A238410
a(n) = floor((3(n-1)^2 + 1)/2).
Original entry on oeis.org
0, 2, 6, 14, 24, 38, 54, 74, 96, 122, 150, 182, 216, 254, 294, 338, 384, 434, 486, 542, 600, 662, 726, 794, 864, 938, 1014, 1094, 1176, 1262, 1350, 1442, 1536, 1634, 1734, 1838, 1944, 2054, 2166, 2282, 2400, 2522, 2646, 2774, 2904, 3038, 3174, 3314, 3456, 3602, 3750, 3902, 4056, 4214, 4374, 4538, 4704
Offset: 1
- Matthew House, Table of n, a(n) for n = 1..10000
- M. J. Morgan, S. Mukwembi and H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math., 311, 2011, 1229-1234.
- B. Zhou and Zh. Du, On eccentric connectivity index, Comm. Math. Comp. Chem. (MATCH), 63, 2010, 181-198.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
-
a := proc (n) options operator, arrow: floor((3/2)*(n-1)^2+1/2) end proc: seq(a(n), n = 1 .. 70);
-
Table[Floor[(3(n-1)^2+1)/2],{n,80}] (* or *) LinearRecurrence[{2,0,-2,1},{0,2,6,14},80] (* Harvey P. Dale, Apr 30 2022 *)
-
a(n)=(3*(n-1)^2 + 1)\2 \\ Charles R Greathouse IV, Feb 15 2017
A116445
Array read by antidiagonals: the binomial transform of the sequence (1,2,..n,0,0,0..) in row n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 3, 8, 7, 1, 1, 3, 8, 16, 9, 1, 1, 3, 8, 20, 27, 11, 1, 1, 3, 8, 20, 43, 41, 13, 1, 1, 3, 8, 20, 48, 81, 58, 15, 1, 1, 3, 8, 20, 48, 106, 138, 78, 17, 1, 1, 3, 8, 20, 48, 112, 213, 218, 101, 19, 1
Offset: 1
First few rows of the array:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 3, 8, 16, 27, 41, 58, 78, 101, ... A104249
1, 3, 8, 20, 43, 81, 138, 218, ... A139488
1, 3, 8, 20, 48, 106, 213, ...
1, 3, 8, 20, 48, 112, 249, ...
...
Diagonals converge to A001792, binomial transform of (1,2,3,...); and the first few rows of the triangle created by reading upwards antidiagonals are:
1
1, 1;
1, 3, 1;
1, 3, 5, 1;
1, 3, 8, 7, 1;
1, 3, 8, 16, 9, 1;
1, 3, 8, 20, 27, 22, 1;
...
a(4), a(5), a(6) = 1, 3, 1 = antidiagonals of the array becoming row three of the triangle.
-
A116445 := proc(n,k)
local a,i ;
a := 0 ;
for i from 0 to n do
a := a+binomial(k,i)*(i+1) ;
end do:
a ;
end proc:
seq(seq(A116445(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Aug 17 2022
A139488
Binomial transform of [1, 2, 3, 4, 0, 0, 0, ...].
Original entry on oeis.org
1, 3, 8, 20, 43, 81, 138, 218, 325, 463, 636, 848, 1103, 1405, 1758, 2166, 2633, 3163, 3760, 4428, 5171, 5993, 6898, 7890, 8973, 10151, 11428, 12808, 14295, 15893, 17606, 19438, 21393, 23475, 25688, 28036, 30523, 33153, 35930, 38858, 41941, 45183
Offset: 0
a(5) = 43 = (1, 4, 6, 4, 1) dot (1, 2, 3, 4, 0) = (1 + 8, + 18 + 16 + 0).
-
a:=proc(n) options operator, arrow: (2/3)*n^3-(1/2)*n^2+(11/6)*n+1 end proc: seq(a(n),n=0..35); # Emeric Deutsch, Apr 30 2008
-
f[n_] := Plus @@ (Table[ Binomial[n - 1, i], {i, 0, n - 1}] PadRight[{1, 2, 3, 4}, n]); Array[f, 43] (* Robert G. Wilson v, Apr 24 2008 *)
Showing 1-10 of 15 results.
Comments