A015723
Number of parts in all partitions of n into distinct parts.
Original entry on oeis.org
1, 1, 3, 3, 5, 8, 10, 13, 18, 25, 30, 40, 49, 63, 80, 98, 119, 149, 179, 218, 266, 318, 380, 455, 541, 640, 760, 895, 1050, 1234, 1442, 1679, 1960, 2272, 2635, 3052, 3520, 4054, 4669, 5359, 6142, 7035, 8037, 9170, 10460, 11896, 13517, 15349, 17394, 19691
Offset: 1
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Arnold Knopfmacher, and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. See s(n).
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Feb 27 2013
-
nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]] (* Geoffrey Critzer, Oct 29 2012; fixed by Vaclav Kotesovec, Apr 16 2016 *)
q[n_, k_] := q[n, k] = If[nVaclav Kotesovec, Apr 16 2016 *)
Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,50}] (* Gus Wiseman, May 09 2019 *)
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},
Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];
a[n_] := b[n, n][[2]];
Array[a, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
-
N=66; q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
Vec(gf) /* Joerg Arndt, Oct 20 2012 */
A327605
Number of parts in all twice partitions of n where both partitions are strict.
Original entry on oeis.org
0, 1, 1, 5, 8, 15, 28, 49, 86, 156, 259, 412, 679, 1086, 1753, 2826, 4400, 6751, 10703, 16250, 24757, 38047, 57459, 85861, 129329, 192660, 286177, 424358, 624510, 915105, 1347787, 1961152, 2847145, 4144089, 5988205, 8638077, 12439833, 17837767, 25536016
Offset: 0
a(3) = 5 = 1+2+2 counting the parts in 3, 21, 2|1.
-
g:= proc(n, i) option remember; `if`(i*(i+1)/2 f+
[0, f[1]])(g(n-i, min(n-i, i-1)))))
end:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]*
h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i$2))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..42);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i (i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
a[n_] := b[n, n, 2][[2]];
a /@ Range[0, 42] (* Jean-François Alcover, Jun 03 2020, after Alois P. Heinz in A327622 *)
A327618
Number A(n,k) of parts in all k-times partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 14, 12, 1, 0, 1, 9, 25, 44, 20, 1, 0, 1, 11, 39, 109, 100, 35, 1, 0, 1, 13, 56, 219, 315, 274, 54, 1, 0, 1, 15, 76, 386, 769, 1179, 581, 86, 1, 0, 1, 17, 99, 622, 1596, 3643, 3234, 1417, 128, 1, 0, 1, 19, 125, 939, 2960, 9135, 12336, 10789, 2978, 192, 1
Offset: 0
A(2,2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 6, 14, 25, 39, 56, 76, 99, ...
1, 12, 44, 109, 219, 386, 622, 939, ...
1, 20, 100, 315, 769, 1596, 2960, 5055, ...
1, 35, 274, 1179, 3643, 9135, 19844, 38823, ...
1, 54, 581, 3234, 12336, 36911, 93302, 208377, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
A327632
Number T(n,k) of parts in all proper k-times partitions of n into distinct parts; triangle T(n,k), n >= 1, 0 <= k <= max(0,n-2), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 4, 6, 4, 1, 7, 13, 12, 5, 1, 9, 30, 52, 35, 6, 1, 12, 61, 137, 156, 72, 7, 1, 17, 121, 384, 638, 548, 196, 8, 1, 24, 210, 880, 1983, 2442, 1543, 400, 9, 1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10, 1, 39, 600, 4477, 17883, 40855, 54279, 40511, 15178, 2070, 11
Offset: 1
T(4,0) = 1:
4 (1 part).
T(4,1) = 2:
4-> 31 (2 parts)
T(4,2) = 3:
4-> 31 -> 211 (3 parts)
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 2, 3;
1, 4, 6, 4;
1, 7, 13, 12, 5;
1, 9, 30, 52, 35, 6;
1, 12, 61, 137, 156, 72, 7;
1, 17, 121, 384, 638, 548, 196, 8;
1, 24, 210, 880, 1983, 2442, 1543, 400, 9;
1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..max(0, n-2)), n=1..14);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, Max[0, n - 2]}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A327623
Number of parts in all n-times partitions of n into distinct parts.
Original entry on oeis.org
0, 1, 1, 7, 27, 121, 553, 3865, 24625, 202954, 1519540, 14193455, 132441998, 1381539355, 14096067555, 168745220585, 1961128020387, 25473872598375, 324797436024684, 4647784901400988, 65394584337577858, 1012005650484163962, 15285115573675197704
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
a:= n-> b(n$3)[2]:
seq(a(n), n=0..23);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return[{1, 0}]]; If[k == 0, Return[{1, 1}]]; If[i (i + 1)/2 < n, Return[{0, 0}]]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
a[n_] := b[n, n, n][[2]];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A327628
Number of parts in all thrice partitions of n into distinct parts.
Original entry on oeis.org
0, 1, 1, 7, 16, 35, 73, 170, 357, 799, 1583, 3159, 6395, 12669, 24663, 49001, 92907, 176482, 340322, 637803, 1189953, 2241558, 4156837, 7629834, 14120680, 25810341, 47076266, 85790799, 155030395, 279010877, 505264895, 902632836, 1611104709, 2880345715
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
a:= n-> b(n$2, 3)[2]:
seq(a(n), n=0..35);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return[{1, 0}]]; If[k == 0, Return[{1, 1}]]; If[i(i+1)/2 < n, Return[{0, 0}]]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
a[n_] := b[n, n, 3][[2]];
a /@ Range[0, 35] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments