cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A015723 Number of parts in all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 3, 3, 5, 8, 10, 13, 18, 25, 30, 40, 49, 63, 80, 98, 119, 149, 179, 218, 266, 318, 380, 455, 541, 640, 760, 895, 1050, 1234, 1442, 1679, 1960, 2272, 2635, 3052, 3520, 4054, 4669, 5359, 6142, 7035, 8037, 9170, 10460, 11896, 13517, 15349, 17394, 19691
Offset: 1

Views

Author

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]]  (* Geoffrey Critzer, Oct 29 2012; fixed by Vaclav Kotesovec, Apr 16 2016 *)
    q[n_, k_] := q[n, k] = If[nVaclav Kotesovec, Apr 16 2016 *)
    Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,50}] (* Gus Wiseman, May 09 2019 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},
       Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];
    a[n_] := b[n, n][[2]];
    Array[a, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf) /* Joerg Arndt, Oct 20 2012 */

Formula

G.f.: sum(k>=1, x^k/(1+x^k) ) * prod(m>=1, 1+x^m ). Convolution of A048272 and A000009. - Vladeta Jovovic, Nov 26 2002
G.f.: sum(k>=1, k*x^(k*(k+1)/2)/prod(i=1..k, 1-x^i ) ). - Vladeta Jovovic, Sep 21 2005
a(n) = A238131(n)+A238132(n) = sum_{k=1..n} A048272(k)*A000009(n-k). - Mircea Merca, Feb 26 2014
a(n) = Sum_{k>=1} k*A008289(n,k). - Vaclav Kotesovec, Apr 16 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, May 19 2018
For n > 0, a(n) = A116676(n) + A116680(n). - Vaclav Kotesovec, May 26 2018

Extensions

Extended and corrected by Naohiro Nomoto, Feb 24 2002

A327605 Number of parts in all twice partitions of n where both partitions are strict.

Original entry on oeis.org

0, 1, 1, 5, 8, 15, 28, 49, 86, 156, 259, 412, 679, 1086, 1753, 2826, 4400, 6751, 10703, 16250, 24757, 38047, 57459, 85861, 129329, 192660, 286177, 424358, 624510, 915105, 1347787, 1961152, 2847145, 4144089, 5988205, 8638077, 12439833, 17837767, 25536016
Offset: 0

Views

Author

Alois P. Heinz, Sep 18 2019

Keywords

Examples

			a(3) = 5 = 1+2+2 counting the parts in 3, 21, 2|1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(i*(i+1)/2 f+
           [0, f[1]])(g(n-i, min(n-i, i-1)))))
        end:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 (f-> f+[0, f[1]*
           h[2]/h[1]])(b(n-i, min(n-i, i-1))*h[1]))(g(i$2))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i (i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
    a[n_] := b[n, n, 2][[2]];
    a /@ Range[0, 42] (* Jean-François Alcover, Jun 03 2020, after Alois P. Heinz in A327622 *)

A327618 Number A(n,k) of parts in all k-times partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 14, 12, 1, 0, 1, 9, 25, 44, 20, 1, 0, 1, 11, 39, 109, 100, 35, 1, 0, 1, 13, 56, 219, 315, 274, 54, 1, 0, 1, 15, 76, 386, 769, 1179, 581, 86, 1, 0, 1, 17, 99, 622, 1596, 3643, 3234, 1417, 128, 1, 0, 1, 19, 125, 939, 2960, 9135, 12336, 10789, 2978, 192, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Comments

Row n is binomial transform of the n-th row of triangle A327631.

Examples

			A(2,2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
Square array A(n,k) begins:
  0,  0,   0,    0,     0,     0,     0,      0, ...
  1,  1,   1,    1,     1,     1,     1,      1, ...
  1,  3,   5,    7,     9,    11,    13,     15, ...
  1,  6,  14,   25,    39,    56,    76,     99, ...
  1, 12,  44,  109,   219,   386,   622,    939, ...
  1, 20, 100,  315,   769,  1596,  2960,   5055, ...
  1, 35, 274, 1179,  3643,  9135, 19844,  38823, ...
  1, 54, 581, 3234, 12336, 36911, 93302, 208377, ...
		

Crossrefs

Columns k=0-3 give: A057427, A006128, A327594, A327627.
Rows n=0-3 give: A000004, A000012, A005408, A095794(k+1).
Main diagonal gives A327619.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
             (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
        end:
    A:= (n, k)-> b(n$2, k)[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
    A[n_, k_] := b[n, n, k][[2]];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} binomial(k,i) * A327631(n,i).

A327632 Number T(n,k) of parts in all proper k-times partitions of n into distinct parts; triangle T(n,k), n >= 1, 0 <= k <= max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 4, 6, 4, 1, 7, 13, 12, 5, 1, 9, 30, 52, 35, 6, 1, 12, 61, 137, 156, 72, 7, 1, 17, 121, 384, 638, 548, 196, 8, 1, 24, 210, 880, 1983, 2442, 1543, 400, 9, 1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10, 1, 39, 600, 4477, 17883, 40855, 54279, 40511, 15178, 2070, 11
Offset: 1

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Comments

In each step at least one part is replaced by the partition of itself into smaller distinct parts. The parts are not resorted and the parts in the result are not necessarily distinct.
T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.
Row n is the inverse binomial transform of the n-th row of array A327622.

Examples

			T(4,0) = 1:
  4    (1 part).
T(4,1) = 2:
  4-> 31    (2 parts)
T(4,2) = 3:
  4-> 31 -> 211   (3 parts)
Triangle T(n,k) begins:
  1;
  1;
  1,  2;
  1,  2,   3;
  1,  4,   6,    4;
  1,  7,  13,   12,    5;
  1,  9,  30,   52,   35,     6;
  1, 12,  61,  137,  156,    72,     7;
  1, 17, 121,  384,  638,   548,   196,    8;
  1, 24, 210,  880, 1983,  2442,  1543,  400,    9;
  1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10;
  ...
		

Crossrefs

Columns k=0-2 give: A057427, -1+A015723(n), A327795.
Row sums give A327647.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..max(0, n-2)), n=1..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
    T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, 0, Max[0, n - 2]}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k,i) * A327622(n,i).
T(n+1,n-1) = 1 for n >= 1.

A327623 Number of parts in all n-times partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 1, 7, 27, 121, 553, 3865, 24625, 202954, 1519540, 14193455, 132441998, 1381539355, 14096067555, 168745220585, 1961128020387, 25473872598375, 324797436024684, 4647784901400988, 65394584337577858, 1012005650484163962, 15285115573675197704
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Crossrefs

Main diagonal of A327622.
Cf. A327619.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    a:= n-> b(n$3)[2]:
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return[{1, 0}]]; If[k == 0, Return[{1, 1}]]; If[i (i + 1)/2 < n, Return[{0, 0}]]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
    a[n_] := b[n, n, n][[2]];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

A327628 Number of parts in all thrice partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 1, 7, 16, 35, 73, 170, 357, 799, 1583, 3159, 6395, 12669, 24663, 49001, 92907, 176482, 340322, 637803, 1189953, 2241558, 4156837, 7629834, 14120680, 25810341, 47076266, 85790799, 155030395, 279010877, 505264895, 902632836, 1611104709, 2880345715
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2019

Keywords

Crossrefs

Column k=3 of A327622.
Cf. A327627.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
         `if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
            b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
        end:
    a:= n-> b(n$2, 3)[2]:
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, Return[{1, 0}]]; If[k == 0, Return[{1, 1}]]; If[i(i+1)/2 < n, Return[{0, 0}]]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
    a[n_] := b[n, n, 3][[2]];
    a /@ Range[0, 35] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.