A323718
Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0
Array begins:
k=0: k=1: k=2: k=3: k=4: k=5:
n=0: 1 1 1 1 1 1
n=1: 1 1 1 1 1 1
n=2: 1 2 3 4 5 6
n=3: 1 3 6 10 15 21
n=4: 1 5 15 34 65 111
n=5: 1 7 28 80 185 371
n=6: 1 11 66 254 739 1785
n=7: 1 15 122 604 2163 6223
n=8: 1 22 266 1785 8120 28413
n=9: 1 30 503 4370 24446 101534
The A(4,2) = 15 twice-partitions:
(4) (31) (22) (211) (1111)
(3)(1) (2)(2) (11)(2) (11)(11)
(2)(11) (111)(1)
(21)(1) (11)(1)(1)
(2)(1)(1) (1)(1)(1)(1)
Cf.
A001970,
A055884,
A096751,
A144150,
A196545,
A281113,
A289501,
A290353,
A300383,
A323719,
A327618,
A327639.
-
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, Jan 25 2019
-
ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
A[n_, k_] := b[n, n, k];
Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
A327631
Number T(n,k) of parts in all proper k-times partitions of n; triangle T(n,k), n >= 1, 0 <= k <= n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 5, 3, 1, 11, 21, 12, 1, 19, 61, 74, 30, 1, 34, 205, 461, 432, 144, 1, 53, 474, 1652, 2671, 2030, 588, 1, 85, 1246, 6795, 17487, 23133, 15262, 3984, 1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980, 1, 191, 6277, 69812, 360114, 1002835, 1606434, 1483181, 734272, 151080
Offset: 1
T(4,0) = 1:
4 (1 part).
T(4,1) = 11 = 2 + 2 + 3 + 4:
4-> 31 (2 parts)
4-> 22 (2 parts)
4-> 211 (3 parts)
4-> 1111 (4 parts)
T(4,2) = 21 = 3 + 4 + 3 + 3 + 4 + 4:
4-> 31 -> 211 (3 parts)
4-> 31 -> 1111 (4 parts)
4-> 22 -> 112 (3 parts)
4-> 22 -> 211 (3 parts)
4-> 22 -> 1111 (4 parts)
4-> 211-> 1111 (4 parts)
T(4,3) = 12 = 4 + 4 + 4:
4-> 31 -> 211 -> 1111 (4 parts)
4-> 22 -> 112 -> 1111 (4 parts)
4-> 22 -> 211 -> 1111 (4 parts)
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 3;
1, 11, 21, 12;
1, 19, 61, 74, 30;
1, 34, 205, 461, 432, 144;
1, 53, 474, 1652, 2671, 2030, 588;
1, 85, 1246, 6795, 17487, 23133, 15262, 3984;
1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n-1), n=1..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]]*h[[2]]/ h[[1]]}][h[[1]]*b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
T[n_, k_] := Sum[b[n, n, i][[2]]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, after Alois P. Heinz *)
A327622
Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 3, 1, 0, 1, 1, 7, 8, 5, 1, 0, 1, 1, 9, 16, 15, 8, 1, 0, 1, 1, 11, 27, 35, 28, 10, 1, 0, 1, 1, 13, 41, 69, 73, 49, 13, 1, 0, 1, 1, 15, 58, 121, 160, 170, 86, 18, 1, 0, 1, 1, 17, 78, 195, 311, 460, 357, 156, 25, 1
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 3, 8, 16, 27, 41, 58, 78, 101, ...
1, 5, 15, 35, 69, 121, 195, 295, 425, ...
1, 8, 28, 73, 160, 311, 553, 918, 1443, ...
1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ...
1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2020, after Maple *)
A327594
Number of parts in all twice partitions of n.
Original entry on oeis.org
0, 1, 5, 14, 44, 100, 274, 581, 1417, 2978, 6660, 13510, 29479, 58087, 120478, 236850, 476913, 916940, 1812498, 3437043, 6657656, 12512273, 23780682, 44194499, 83117200, 152837210, 283431014, 517571202, 949844843, 1719175176, 3127751062, 5618969956, 10133425489
Offset: 0
a(2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
a(3) = 14 = 1+2+3+2+3+3: 3, 21, 111, 2|1, 11|1, 1|1|1.
-
g:= proc(n) option remember; (p-> [p(n), add(p(n-j)*
numtheory[tau](j), j=1..n)])(combinat[numbpart])
end:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<2, 0, b(n, i-1)) +(h-> (f-> f +[0, f[1]*
h[2]/h[1]])(b(n-i, min(n-i, i))*h[1]))(g(i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..37);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> b(n$2, 2)[2]:
seq(a(n), n=0..37);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := b[n, n, 2][[2]];
a /@ Range[0, 37] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
A327619
Number of parts in all n-times partitions of n.
Original entry on oeis.org
0, 1, 5, 25, 219, 1596, 19844, 208377, 3394835, 46799236, 886886076, 15668835975, 366602236558, 7582277939549, 199035634246870, 4962275379320665, 150339081311823341, 4214812414260868163, 141823733752997729872, 4533014863242019822308, 169587948261109794026999
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> b(n$3)[2]:
seq(a(n), n=0..21);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := b[n, n, n][[2]];
a /@ Range[0, 21] (* Jean-François Alcover, May 01 2020, after Maple *)
A327627
Number of parts in all thrice partitions of n.
Original entry on oeis.org
0, 1, 7, 25, 109, 315, 1179, 3234, 10789, 29517, 89217, 238422, 708782, 1838147, 5158957, 13489966, 36783238, 94122716, 252156677, 638254389, 1674465026, 4215683662, 10834938301, 27032106456, 68911496918, 170196098655, 427274190051, 1051046411165, 2612004809769
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> b(n$2, 3)[2]:
seq(a(n), n=0..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := b[n, n, 3][[2]];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments