A327643
Number of refinement sequences n -> ... -> {1}^n, where in each step one part is replaced by a partition of itself into two smaller parts (in weakly decreasing order).
Original entry on oeis.org
1, 1, 1, 3, 6, 24, 84, 498, 2220, 15108, 92328, 773580, 5636460, 53563476, 471562512, 5270698716, 52117937052, 637276396764, 7317811499736, 100453675122444, 1276319138168796, 19048874583061716, 270233458572751440, 4442429353548965628, 68384217440167826412
Offset: 1
a(1) = 1:
1
a(2) = 1:
2 -> 11
a(3) = 1:
3 -> 21 -> 111
a(4) = 3:
4 -> 31 -> 211 -> 1111
4 -> 22 -> 112 -> 1111
4 -> 22 -> 211 -> 1111
a(5) = 6:
5 -> 41 -> 311 -> 2111 -> 11111
5 -> 41 -> 221 -> 1121 -> 11111
5 -> 41 -> 221 -> 2111 -> 11111
5 -> 32 -> 212 -> 1112 -> 11111
5 -> 32 -> 212 -> 2111 -> 11111
5 -> 32 -> 311 -> 2111 -> 11111
-
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
a:= n-> add(b(n$2, i)*(-1)^(n-1-i)*binomial(n-1, i), i=0..n-1):
seq(a(n), n=1..29);
# second Maple program:
a:= proc(n) option remember; `if`(n=1, 1,
add(a(j)*a(n-j)*binomial(n-2, j-1), j=1..n/2))
end:
seq(a(n), n=1..29);
-
a[n_] := a[n] = Sum[Binomial[n-2, j-1] a[j] a[n-j], {j, n/2}]; a[1] = 1;
Array[a, 25] (* Jean-François Alcover, Apr 28 2020 *)
A327639
Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 15, 16, 6, 1, 10, 45, 88, 76, 24, 1, 14, 93, 282, 420, 302, 84, 1, 21, 223, 1052, 2489, 3112, 1970, 498, 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220, 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108
Offset: 0
T(4,0) = 1: 4
T(4,1) = 4: T(4,2) = 6: T(4,3) = 3:
4-> 31 4-> 31 -> 211 4-> 31 -> 211 -> 1111
4-> 22 4-> 31 -> 1111 4-> 22 -> 112 -> 1111
4-> 211 4-> 22 -> 112 4-> 22 -> 211 -> 1111
4-> 1111 4-> 22 -> 211
4-> 22 -> 1111
4-> 211-> 1111
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 15, 16, 6;
1, 10, 45, 88, 76, 24;
1, 14, 93, 282, 420, 302, 84;
1, 21, 223, 1052, 2489, 3112, 1970, 498;
1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220;
1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108;
...
-
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, Max[0, n - 1] }] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A327618
Number A(n,k) of parts in all k-times partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 7, 14, 12, 1, 0, 1, 9, 25, 44, 20, 1, 0, 1, 11, 39, 109, 100, 35, 1, 0, 1, 13, 56, 219, 315, 274, 54, 1, 0, 1, 15, 76, 386, 769, 1179, 581, 86, 1, 0, 1, 17, 99, 622, 1596, 3643, 3234, 1417, 128, 1, 0, 1, 19, 125, 939, 2960, 9135, 12336, 10789, 2978, 192, 1
Offset: 0
A(2,2) = 5 = 1+2+2 counting the parts in 2, 11, 1|1.
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 6, 14, 25, 39, 56, 76, 99, ...
1, 12, 44, 109, 219, 386, 622, 939, ...
1, 20, 100, 315, 769, 1596, 2960, 5055, ...
1, 35, 274, 1179, 3643, 9135, 19844, 38823, ...
1, 54, 581, 3234, 12336, 36911, 93302, 208377, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
A327632
Number T(n,k) of parts in all proper k-times partitions of n into distinct parts; triangle T(n,k), n >= 1, 0 <= k <= max(0,n-2), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 4, 6, 4, 1, 7, 13, 12, 5, 1, 9, 30, 52, 35, 6, 1, 12, 61, 137, 156, 72, 7, 1, 17, 121, 384, 638, 548, 196, 8, 1, 24, 210, 880, 1983, 2442, 1543, 400, 9, 1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10, 1, 39, 600, 4477, 17883, 40855, 54279, 40511, 15178, 2070, 11
Offset: 1
T(4,0) = 1:
4 (1 part).
T(4,1) = 2:
4-> 31 (2 parts)
T(4,2) = 3:
4-> 31 -> 211 (3 parts)
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 2, 3;
1, 4, 6, 4;
1, 7, 13, 12, 5;
1, 9, 30, 52, 35, 6;
1, 12, 61, 137, 156, 72, 7;
1, 17, 121, 384, 638, 548, 196, 8;
1, 24, 210, 880, 1983, 2442, 1543, 400, 9;
1, 29, 353, 2012, 6211, 10865, 10555, 5231, 1026, 10;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..max(0, n-2)), n=1..14);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, Max[0, n - 2]}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A327648
Number of parts in all proper many times partitions of n.
Original entry on oeis.org
0, 1, 3, 9, 45, 185, 1277, 7469, 67993, 514841, 5414197, 52609653, 679432169, 7704502013, 111283754969, 1515535050805, 25257251330321, 385282195339393, 7088110874426409, 123325149268482781, 2520808658222616653, 48623257343586890769, 1078165538033926164281
Offset: 0
a(3) = 9 = 1 + 2 + 3 + 3, counting the (final) parts in: 3, 3->21, 3->111, 3->21->111.
a(4) = 45: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> add(add(b(n$2, i)[2]*(-1)^(k-i)*
binomial(k, i), i=0..k), k=0..n-1):
seq(a(n), n=0..25);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {k, 0, n - 1}, {i, 0, k}];
a /@ Range[0, 25] (* Jean-François Alcover, May 01 2020, after Maple *)
A328042
Number of parts in all proper twice partitions of n.
Original entry on oeis.org
3, 21, 61, 205, 474, 1246, 2723, 6277, 12961, 28682, 56976, 118919, 234715, 473988, 913011, 1807211, 3430048, 6648397, 12500170, 23764885, 44174088, 83090853, 152803509, 283387971, 517516615, 949775754, 1719088271, 3127641937, 5618833687, 10133255636
Offset: 3
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
seq(a(n), n=3..35);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := With[{k = 2}, Sum[b[n, n, i][[2]] (-1)^(k-i) Binomial[k, i], {i, 0, k}]];
a /@ Range[3, 35] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
A328041
Number of parts in all proper floor(n/2)-times partitions of n.
Original entry on oeis.org
0, 1, 2, 5, 21, 61, 461, 1652, 17487, 76264, 1002835, 5207742, 88664398, 515821495, 10184805624, 69200406679, 1610282904928, 12024183111167, 318978837371853, 2653055962437988, 79332250069994262, 725413309833320933, 23919660963588169669, 238830233430136549070
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)
*binomial(k, i), i=0..k))(iquo(n,2)):
seq(a(n), n=0..23);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, {1, 0}, If[k==0, {1, 1}, If[i<2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
a[n_] := With[{k = Quotient[n, 2]}, Sum[b[n, n, i][[2]] (-1)^(k - i)* Binomial[k, i], {i, 0, k}]];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments