A002846
Number of ways of transforming a set of n indistinguishable objects into n singletons via a sequence of n-1 refinements.
Original entry on oeis.org
1, 1, 1, 2, 4, 11, 33, 116, 435, 1832, 8167, 39700, 201785, 1099449, 6237505, 37406458, 232176847, 1513796040, 10162373172, 71158660160, 511957012509, 3819416719742, 29195604706757, 230713267586731, 1861978821637735, 15484368121967620, 131388840051760458
Offset: 1
a(5) = 4 because there are 4 paths from top to bottom in this lattice:
.
ooooo
/ \
o.oooo oo.ooo
| X |
o.o.ooo o.oo.oo
\ /
o.o.o.oo
|
o.o.o.o.o
.
(This is the ranked poset L(5), but drawn vertically rather than horizontally.)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..80
- P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
- R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission]
- Olivier Gérard, The ranked posets L(2),...,L(8)
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9, Version 1, [Cached copy, with permission]
- Gus Wiseman, Hasse Diagrams of Partition Refinement Posets n=1..9, Version 2, [Cached copy, with permission]
-
v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort(subsop(
i=[j, l[i]-j][], l))), j=1..l[i]/2), [][]), i=1..nops(l))]:
b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end:
a:= n-> b([n]):
seq(a(n), n=1..30); # Alois P. Heinz, Sep 22 2019
-
<Mitch Harris, Jan 19 2006 *)
-
def A002846(n): return Posets.IntegerPartitions(n).chain_polynomial().leading_coefficient() # Max Alekseyev, Dec 23 2015
A327631
Number T(n,k) of parts in all proper k-times partitions of n; triangle T(n,k), n >= 1, 0 <= k <= n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 5, 3, 1, 11, 21, 12, 1, 19, 61, 74, 30, 1, 34, 205, 461, 432, 144, 1, 53, 474, 1652, 2671, 2030, 588, 1, 85, 1246, 6795, 17487, 23133, 15262, 3984, 1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980, 1, 191, 6277, 69812, 360114, 1002835, 1606434, 1483181, 734272, 151080
Offset: 1
T(4,0) = 1:
4 (1 part).
T(4,1) = 11 = 2 + 2 + 3 + 4:
4-> 31 (2 parts)
4-> 22 (2 parts)
4-> 211 (3 parts)
4-> 1111 (4 parts)
T(4,2) = 21 = 3 + 4 + 3 + 3 + 4 + 4:
4-> 31 -> 211 (3 parts)
4-> 31 -> 1111 (4 parts)
4-> 22 -> 112 (3 parts)
4-> 22 -> 211 (3 parts)
4-> 22 -> 1111 (4 parts)
4-> 211-> 1111 (4 parts)
T(4,3) = 12 = 4 + 4 + 4:
4-> 31 -> 211 -> 1111 (4 parts)
4-> 22 -> 112 -> 1111 (4 parts)
4-> 22 -> 211 -> 1111 (4 parts)
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 3;
1, 11, 21, 12;
1, 19, 61, 74, 30;
1, 34, 205, 461, 432, 144;
1, 53, 474, 1652, 2671, 2030, 588;
1, 85, 1246, 6795, 17487, 23133, 15262, 3984;
1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n-1), n=1..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]]*h[[2]]/ h[[1]]}][h[[1]]*b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
T[n_, k_] := Sum[b[n, n, i][[2]]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, after Alois P. Heinz *)
A327639
Number T(n,k) of proper k-times partitions of n; triangle T(n,k), n >= 0, 0 <= k <= max(0,n-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 15, 16, 6, 1, 10, 45, 88, 76, 24, 1, 14, 93, 282, 420, 302, 84, 1, 21, 223, 1052, 2489, 3112, 1970, 498, 1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220, 1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108
Offset: 0
T(4,0) = 1: 4
T(4,1) = 4: T(4,2) = 6: T(4,3) = 3:
4-> 31 4-> 31 -> 211 4-> 31 -> 211 -> 1111
4-> 22 4-> 31 -> 1111 4-> 22 -> 112 -> 1111
4-> 211 4-> 22 -> 112 4-> 22 -> 211 -> 1111
4-> 1111 4-> 22 -> 211
4-> 22 -> 1111
4-> 211-> 1111
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 15, 16, 6;
1, 10, 45, 88, 76, 24;
1, 14, 93, 282, 420, 302, 84;
1, 21, 223, 1052, 2489, 3112, 1970, 498;
1, 29, 444, 2950, 9865, 18123, 18618, 10046, 2220;
1, 41, 944, 9030, 42787, 112669, 173338, 155160, 74938, 15108;
...
-
b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
end:
T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..max(0, n-1)), n=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];
T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, Max[0, n - 1] }] // Flatten (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A327702
Number of refinement sequences n -> ... -> {1}^n, where in each step one part that is the rightmost copy of its size is replaced by a partition of itself into smaller parts (in weakly decreasing order).
Original entry on oeis.org
1, 1, 2, 5, 14, 47, 174, 730, 3300, 16361, 85991, 485982, 2877194, 18064663, 118111993, 810388956, 5755059363, 42643884970, 325468477721, 2576976440845, 20960795772211, 176056148076418, 1514733658531058, 13418942409623726, 121442280888373117, 1128425823360525506
Offset: 1
a(4) = 5:
4 -> 1111
4 -> 211 -> 1111
4 -> 31 -> 1111
4 -> 31 -> 211 -> 1111
4 -> 22 -> 211 -> 1111
-
v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort(
subsop(i=h[], l))), h=({combinat[partition](l[i])[]}
minus{[l[i]]})), [][]), i=1..nops(l))]:
b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end:
a:= n-> b([n]):
seq(a(n), n=1..26);
A327697
Number of refinement sequences n -> ... -> {1}^n, where in each step every single part of a nonempty selection of parts is replaced by a partition of itself into smaller parts (in weakly decreasing order).
Original entry on oeis.org
1, 1, 2, 7, 22, 122, 598, 4683, 31148, 292008, 2560274, 30122014, 313694962, 4189079688, 53048837390, 826150653479, 11827659365138, 204993767192252, 3371451881544534, 65337695492942258, 1198123466804343518, 25318312971995895392, 516420623159289735874
Offset: 1
a(1) = 1:
1
a(2) = 1:
2 -> 11
a(3) = 2:
3 -> 111
3 -> 21 -> 111
a(4) = 7:
4 -> 1111
4 -> 211 -> 1111
4 -> 31 -> 1111
4 -> 31 -> 211 -> 1111
4 -> 22 -> 1111
4 -> 22 -> 112 -> 1111
4 -> 22 -> 211 -> 1111
A327698
Number of refinement sequences n -> ... -> {1}^n, where in each step exactly one part is replaced by a partition of itself into smaller parts (in weakly decreasing order).
Original entry on oeis.org
1, 1, 2, 6, 17, 74, 300, 1755, 9360, 65510, 442117, 3802889, 30213386, 294892947, 2789021105, 31360525517, 334374848070, 4184958056248, 50606351991305, 704124800141153, 9452367941048830, 143309007303310536, 2124982437997726705, 35389562541842450218
Offset: 1
a(4) = 6:
4 -> 1111
4 -> 211 -> 1111
4 -> 31 -> 1111
4 -> 31 -> 211 -> 1111
4 -> 22 -> 112 -> 1111
4 -> 22 -> 211 -> 1111
A327699
Number of refinement sequences n -> ... -> {1}^n, where in each step every single part of a nonempty selection of parts is replaced by a partition of itself into two smaller parts (in weakly decreasing order).
Original entry on oeis.org
1, 1, 1, 4, 9, 48, 211, 1736, 9777, 91169, 739174, 8613817, 83763730, 1105436491, 13222076337, 207852246589, 2789691577561, 47759515531854, 755158220565169, 14595210284816038, 255814560447492788, 5373613110108953192, 105867623217924984398, 2460702471446564481641
Offset: 1
a(4) = 4:
4 -> 31 -> 211 -> 1111
4 -> 22 -> 1111
4 -> 22 -> 112 -> 1111
4 -> 22 -> 211 -> 1111
A327729
a(n) = Sum_{p} M(n-k; p_1-1, ..., p_k-1) * Product_{j=1..k} a(p_j), where p = (p_1, ..., p_k) ranges over all partitions of n into smaller parts (k is a partition length and M is a multinomial).
Original entry on oeis.org
1, 1, 2, 6, 18, 90, 414, 2892, 18342, 155124, 1265130, 13413240, 129656286, 1564538796, 18285385518, 255345207156, 3378398348214, 52931303772912, 797460543143154, 13926097774972152, 234050020177159926, 4466082284967035124, 83159771376289666806
Offset: 1
-
with(combinat):
a:= proc(n) option remember; `if`(n<2, 1, add(mul(a(i), i=p)
*multinomial(n-nops(p), map(x-> x-1, p)[]),
p=select(x-> nops(x)>1, partition(n))))
end:
seq(a(n), n=1..24);
# second Maple program:
b:= proc(n, p, i) option remember; `if`(n=0, p!, `if`(i<1, 0,
b(n, p, i-1) +a(i)*b(n-i, p-1, min(n-i, i))/(i-1)!))
end:
a:= n-> `if`(n<2, 1, b(n$2, n-1)):
seq(a(n), n=1..24);
-
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i < 1, 0, b[n, p, i - 1] + a[i] b[n - i, p - 1, Min[n - i, i]]/(i - 1)!]];
a[n_] := If[n < 2, 1, b[n, n, n - 1]];
Array[a, 24] (* Jean-François Alcover, May 03 2020, after 2nd Maple program *)
Showing 1-8 of 8 results.
Comments