cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327643 Number of refinement sequences n -> ... -> {1}^n, where in each step one part is replaced by a partition of itself into two smaller parts (in weakly decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 6, 24, 84, 498, 2220, 15108, 92328, 773580, 5636460, 53563476, 471562512, 5270698716, 52117937052, 637276396764, 7317811499736, 100453675122444, 1276319138168796, 19048874583061716, 270233458572751440, 4442429353548965628, 68384217440167826412
Offset: 1

Views

Author

Alois P. Heinz, Sep 20 2019

Keywords

Comments

Number of proper (n-1)-times partitions of n, cf. A327639.
Might be called "Half-Factorial numbers" analog to the "Half-Catalan numbers" (A000992).
The recursion formula is a special case of the formula given in A327729.
a(n+1)/(n*a(n)) tends to 0.67617164... - Vaclav Kotesovec, Apr 28 2020

Examples

			a(1) = 1:
  1
a(2) = 1:
  2 -> 11
a(3) = 1:
  3 -> 21 -> 111
a(4) = 3:
  4 -> 31 -> 211 -> 1111
  4 -> 22 -> 112 -> 1111
  4 -> 22 -> 211 -> 1111
a(5) = 6:
  5 -> 41 -> 311 -> 2111 -> 11111
  5 -> 41 -> 221 -> 1121 -> 11111
  5 -> 41 -> 221 -> 2111 -> 11111
  5 -> 32 -> 212 -> 1112 -> 11111
  5 -> 32 -> 212 -> 2111 -> 11111
  5 -> 32 -> 311 -> 2111 -> 11111
		

Crossrefs

Cf. A000142, A000992, A002846 (only one part of each size is replaceable), A327631, A327639, A327697, A327698, A327699, A327702, A327729.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,
          b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> add(b(n$2, i)*(-1)^(n-1-i)*binomial(n-1, i), i=0..n-1):
    seq(a(n), n=1..29);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1,
          add(a(j)*a(n-j)*binomial(n-2, j-1), j=1..n/2))
        end:
    seq(a(n), n=1..29);
  • Mathematica
    a[n_] := a[n] = Sum[Binomial[n-2, j-1] a[j] a[n-j], {j, n/2}]; a[1] = 1;
    Array[a, 25] (* Jean-François Alcover, Apr 28 2020 *)

Formula

a(n) = Sum_{j=1..floor(n/2)} C(n-2,j-1) a(j)*a(n-j) for n > 1, a(1) = 1.
a(n) = A327639(n,n-1) = A327631(n,n-1)/n.

A327702 Number of refinement sequences n -> ... -> {1}^n, where in each step one part that is the rightmost copy of its size is replaced by a partition of itself into smaller parts (in weakly decreasing order).

Original entry on oeis.org

1, 1, 2, 5, 14, 47, 174, 730, 3300, 16361, 85991, 485982, 2877194, 18064663, 118111993, 810388956, 5755059363, 42643884970, 325468477721, 2576976440845, 20960795772211, 176056148076418, 1514733658531058, 13418942409623726, 121442280888373117, 1128425823360525506
Offset: 1

Views

Author

Alois P. Heinz, Sep 22 2019

Keywords

Examples

			a(4) = 5:
  4 -> 1111
  4 -> 211  -> 1111
  4 -> 31   -> 1111
  4 -> 31   -> 211  -> 1111
  4 -> 22   -> 211  -> 1111
		

Crossrefs

Programs

  • Maple
    v:= l-> [seq(`if`(i=1 or l[i]>l[i-1], seq(subs(1=[][], sort(
             subsop(i=h[], l))), h=({combinat[partition](l[i])[]}
             minus{[l[i]]})), [][]), i=1..nops(l))]:
    b:= proc(l) option remember; `if`(max(l)<2, 1, add(b(h), h=v(l))) end:
    a:= n-> b([n]):
    seq(a(n), n=1..26);

A327697 Number of refinement sequences n -> ... -> {1}^n, where in each step every single part of a nonempty selection of parts is replaced by a partition of itself into smaller parts (in weakly decreasing order).

Original entry on oeis.org

1, 1, 2, 7, 22, 122, 598, 4683, 31148, 292008, 2560274, 30122014, 313694962, 4189079688, 53048837390, 826150653479, 11827659365138, 204993767192252, 3371451881544534, 65337695492942258, 1198123466804343518, 25318312971995895392, 516420623159289735874
Offset: 1

Views

Author

Alois P. Heinz, Sep 22 2019

Keywords

Examples

			a(1) = 1:
  1
a(2) = 1:
  2 -> 11
a(3) = 2:
  3 -> 111
  3 -> 21   -> 111
a(4) = 7:
  4 -> 1111
  4 -> 211  -> 1111
  4 -> 31   -> 1111
  4 -> 31   -> 211  -> 1111
  4 -> 22   -> 1111
  4 -> 22   -> 112  -> 1111
  4 -> 22   -> 211  -> 1111
		

Crossrefs

A327698 Number of refinement sequences n -> ... -> {1}^n, where in each step exactly one part is replaced by a partition of itself into smaller parts (in weakly decreasing order).

Original entry on oeis.org

1, 1, 2, 6, 17, 74, 300, 1755, 9360, 65510, 442117, 3802889, 30213386, 294892947, 2789021105, 31360525517, 334374848070, 4184958056248, 50606351991305, 704124800141153, 9452367941048830, 143309007303310536, 2124982437997726705, 35389562541842450218
Offset: 1

Views

Author

Alois P. Heinz, Sep 22 2019

Keywords

Examples

			a(4) = 6:
  4 -> 1111
  4 -> 211  -> 1111
  4 -> 31   -> 1111
  4 -> 31   -> 211  -> 1111
  4 -> 22   -> 112  -> 1111
  4 -> 22   -> 211  -> 1111
		

Crossrefs

Showing 1-4 of 4 results.