A327631
Number T(n,k) of parts in all proper k-times partitions of n; triangle T(n,k), n >= 1, 0 <= k <= n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 5, 3, 1, 11, 21, 12, 1, 19, 61, 74, 30, 1, 34, 205, 461, 432, 144, 1, 53, 474, 1652, 2671, 2030, 588, 1, 85, 1246, 6795, 17487, 23133, 15262, 3984, 1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980, 1, 191, 6277, 69812, 360114, 1002835, 1606434, 1483181, 734272, 151080
Offset: 1
T(4,0) = 1:
4 (1 part).
T(4,1) = 11 = 2 + 2 + 3 + 4:
4-> 31 (2 parts)
4-> 22 (2 parts)
4-> 211 (3 parts)
4-> 1111 (4 parts)
T(4,2) = 21 = 3 + 4 + 3 + 3 + 4 + 4:
4-> 31 -> 211 (3 parts)
4-> 31 -> 1111 (4 parts)
4-> 22 -> 112 (3 parts)
4-> 22 -> 211 (3 parts)
4-> 22 -> 1111 (4 parts)
4-> 211-> 1111 (4 parts)
T(4,3) = 12 = 4 + 4 + 4:
4-> 31 -> 211 -> 1111 (4 parts)
4-> 22 -> 112 -> 1111 (4 parts)
4-> 22 -> 211 -> 1111 (4 parts)
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 3;
1, 11, 21, 12;
1, 19, 61, 74, 30;
1, 34, 205, 461, 432, 144;
1, 53, 474, 1652, 2671, 2030, 588;
1, 85, 1246, 6795, 17487, 23133, 15262, 3984;
1, 127, 2723, 20966, 76264, 148134, 158452, 88194, 19980;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+
(h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i), k)))(b(i$2, k-1))))
end:
T:= (n, k)-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n-1), n=1..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]]*h[[2]]/ h[[1]]}][h[[1]]*b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];
T[n_, k_] := Sum[b[n, n, i][[2]]*(-1)^(k - i)*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 07 2020, after Alois P. Heinz *)
A327622
Number A(n,k) of parts in all k-times partitions of n into distinct parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 3, 1, 0, 1, 1, 7, 8, 5, 1, 0, 1, 1, 9, 16, 15, 8, 1, 0, 1, 1, 11, 27, 35, 28, 10, 1, 0, 1, 1, 13, 41, 69, 73, 49, 13, 1, 0, 1, 1, 15, 58, 121, 160, 170, 86, 18, 1, 0, 1, 1, 17, 78, 195, 311, 460, 357, 156, 25, 1
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 3, 8, 16, 27, 41, 58, 78, 101, ...
1, 5, 15, 35, 69, 121, 195, 295, 425, ...
1, 8, 28, 73, 160, 311, 553, 918, 1443, ...
1, 10, 49, 170, 460, 1047, 2106, 3865, 6611, ...
1, 13, 86, 357, 1119, 2893, 6507, 13182, 24625, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
A:= (n, k)-> b(n$2, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n==0, Return@{1, 0}]; If[k == 0, Return@{1, 1}]; If[i(i + 1)/2 < n, Return@{0, 0}]; b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]];
A[n_, k_] := b[n, n, k][[2]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2020, after Maple *)
A327647
Number of parts in all proper many times partitions of n into distinct parts.
Original entry on oeis.org
0, 1, 1, 3, 6, 15, 38, 133, 446, 1913, 7492, 36293, 175904, 953729, 5053294, 31353825, 188697696, 1268175779, 8356974190, 61775786301, 448436391810, 3579695446911, 27848806031468, 239229189529685, 2019531300063238, 18477179022470655, 165744369451885256
Offset: 0
a(4) = 6 = 1 + 2 + 3, counting the (final) parts in 4, 4->31, 4->31->211.
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
a:= n-> add(add(b(n$2, i)[2]*(-1)^(k-i)*
binomial(k, i), i=0..k), k=0..max(0, n-2)):
seq(a(n), n=0..27);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i(i + 1)/2 < n, 0, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]]* h[[2]]/h[[1]]}][h[[1]] b[n-i, Min[n - i, i - 1], k]]][b[i, i, k - 1]]]]];
a[n_] := Sum[Sum[b[n, n, i][[2]] (-1)^(k-i) Binomial[k, i], {i, 0, k}], {k, 0, Max[0, n-2]}];
a /@ Range[0, 27] (* Jean-François Alcover, May 03 2020, after Maple *)
A327795
Number of parts in all proper twice partitions of n into distinct parts.
Original entry on oeis.org
0, 0, 0, 3, 6, 13, 30, 61, 121, 210, 353, 600, 989, 1628, 2667, 4205, 6514, 10406, 15893, 24322, 37516, 56824, 85102, 128420, 191579, 284898, 422839, 622721, 913006, 1345320, 1958269, 2843788, 4140170, 5983662, 8632808, 12433730, 17830728, 25527909, 36516161
Offset: 1
a(4) = 3:
4 -> 31 -> 211 (3 parts)
-
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],
`if`(k=0, [1, 1], `if`(i*(i+1)/2 (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*
b(n-i, min(n-i, i-1), k)))(b(i$2, k-1)))))
end:
a:= n-> (k-> add(b(n$2, i)[2]*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
seq(a(n), n=1..41);
-
b[n_, i_, k_] := b[n, i, k] = With[{}, If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i (i + 1)/2 < n, {0, 0}, b[n, i - 1, k] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/h[[1]]}][h[[1]] b[n - i, Min[n - i, i - 1], k]]][ b[i, i, k - 1]]]]]];
T[n_, k_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 2];
Array[a, 41] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments