A167566
The third left hand column of triangle A167565.
Original entry on oeis.org
2, 16, 67, 202, 497, 1064, 2058, 3684, 6204, 9944, 15301, 22750, 32851, 46256, 63716, 86088, 114342, 149568, 192983, 245938, 309925, 386584, 477710, 585260, 711360, 858312, 1028601, 1224902, 1450087, 1707232, 1999624, 2330768, 2704394
Offset: 3
Equals the third left hand column of triangle
A167565.
-
Table[(7*n^5 - 30*n^4 + 45*n^3 - 30*n^2 + 8*n)/5!, {n,3,100}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {2, 16, 67, 202, 497, 1064}, 100] (* G. C. Greubel, Jun 16 2016 *)
-
Vec((1*z^2 + 4*z + 2)/(1-z)^6 + O(z^50)) \\ Michel Marcus, Jul 05 2017
-
a(n) = n*(7*n^4 - 30*n^3 + 45*n^2 - 30*n + 8)/120 \\ Charles R Greathouse IV, Jul 14 2017
A167567
The fourth left hand column of triangle A167565.
Original entry on oeis.org
0, 14, 124, 601, 2120, 6096, 15168, 33858, 69432, 132990, 240812, 415987, 690352, 1106768, 1721760, 2608548, 3860496, 5595006, 7957884, 11128205, 15323704, 20806720, 27890720, 36947430, 48414600, 62804430, 80712684
Offset: 4
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Equals the fourth left hand column of triangle
A167565.
-
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 14, 124, 601,
2120, 6096, 15168, 33858}, 100] (* G. C. Greubel, Jun 16 2016 *)
A168304
The fifth left hand column of triangle A167565.
Original entry on oeis.org
24, 368, 2736, 13712, 53121, 171258, 480711, 1210572, 2793219, 5996562, 12117677, 23257104, 42696758, 75408396, 128723898, 213203256, 343741122, 540958044, 832928118, 1257300704, 1863880095, 2717733590, 3902905305, 5526820260, 7725470805
Offset: 5
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
Equals the fifth left hand column of triangle
A167565.
-
[(321*n^9-4500*n^8+25506*n^7-75096*n^6+121905*n^5- 104580*n^4+2736*n^2+37164*n^3-3456*n)/362880: n in [5..40]]; // Vincenzo Librandi, Jul 18 2016
-
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{24, 368, 2736, 13712, 53121, 171258, 480711, 1210572, 2793219, 5996562},50] (* G. C. Greubel, Jul 17 2016 *)
A005359
a(n) = n! if n is even, otherwise 0 (from Taylor series for cos x).
Original entry on oeis.org
1, 0, 2, 0, 24, 0, 720, 0, 40320, 0, 3628800, 0, 479001600, 0, 87178291200, 0, 20922789888000, 0, 6402373705728000, 0, 2432902008176640000, 0, 1124000727777607680000, 0, 620448401733239439360000, 0
Offset: 0
- Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought".
Equals the first right hand column of
A167565.
Equals the first left hand column of
A167568.
(End)
Bisection (even part) gives
A010050.
-
BB:={E=Prod(Z,Z),S=Union(Epsilon,Prod(S,E))}: ZL:=[S,BB, labeled]: > seq(count(ZL,size=n),n=0..25); # Zerinvary Lajos, Apr 22 2007
a:=n->n!+(-1)^n*n!: seq(a(n)/2, n=0..25); # Zerinvary Lajos, Mar 25 2008
-
Riffle[Range[0,30,2]!,0] (* Harvey P. Dale, Nov 16 2011 *)
a[ n_] := If[n >= 0 && EvenQ[n], n!, 0]; (* Michael Somos, Mar 19 2019 *)
-
{a(n) = if(n<0, 0, if(n%2, 0, n!))}; /* Michael Somos, Mar 04 2004 */
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A003148
a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 7, 27, 321, 2265, 37575, 390915, 8281665, 114610545, 2946939975, 51083368875, 1542234996225, 32192256321225, 1114841223671175, 27254953356505875, 1064057291370698625, 29845288035840902625, 1296073464766972266375, 41049997128507054562875
Offset: 0
arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) = 1 + 1/3*x + 7/15*x^2 + 9/35*x^3 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a003148 n = a003148_list !! n
a003148_list = 1 : 1 : zipWith (+) (tail a003148_list)
(zipWith (*) (tail a002943_list) a003148_list)
-- Reinhard Zumkeller, Nov 22 2011
-
[n le 2 select 1 else Self(n-1) + 2*(n-2)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 04 2022
-
# double factorial of odd "l" df := proc(l) local n; n := iquo(l,2); RETURN( factorial(l)/2^n/factorial(n)); end: x := 1; for n from 1 to 15 do if n mod 2 = 0 then x := 2*n*x+df(2*n-1); else x := 2*n*x-df(2*n-1); fi; print(x); od; quit
-
a[n_] := a[n] = (-1)^n*(2n - 1)!! + 2n*a[n - 1]; a[0] = 1; Table[ a[n], {n, 0, 14}] (* Jean-François Alcover, Dec 01 2011, after R. J. Mathar *)
a[ n_] := If[ n < 0, 0, (2 n + 1)!! Hypergeometric2F1[ -n, 1/2, 3/2, 2]]; (* Michael Somos, Apr 20 2018 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / ((1 - 2 x) Sqrt[1 + 2 x]), {x, 0, n}]]; (* Michael Somos, Apr 20 2018 *)
RecurrenceTable[{a[0]==a[1]==1,a[n+1]==a[n]+2n(2n+1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Jul 27 2019 *)
-
Vec(serlaplace(1/(sqrt(1+2*x + O(x^20))*(1-2*x)))) \\ Andrew Howroyd, Feb 05 2018
-
@CachedFunction
def a(n): return 1 if (n<2) else a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) # a = A003148
[a(n) for n in range(31)] # G. C. Greubel, Nov 04 2022
Showing 1-6 of 6 results.
Comments