cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128134 A128132 * A007318.

Original entry on oeis.org

1, 1, 2, 2, 5, 3, 3, 10, 11, 4, 4, 17, 27, 19, 5, 5, 26, 54, 56, 29, 6, 6, 37, 95, 130, 100, 41, 7, 7, 50, 153, 260, 265, 162, 55, 8, 8, 65, 231, 469, 595, 483, 245, 71, 9, 9, 82, 332, 784, 1190, 1204, 812, 352, 89, 10
Offset: 1

Views

Author

Gary W. Adamson, Feb 15 2007

Keywords

Comments

A007318 * A128132 = A128133. Row sums = A128135: (1, 3, 10, 28, 72, 176, ...).

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:
  1;
  1,  2;
  2,  5,  3;
  3, 10, 11,   4;
  4, 17, 27,  19,   5;
  5, 26, 54,  56,  29,  6;
  6, 37, 95, 130, 100, 41, 7;
  ...
		

Crossrefs

Formula

A128132 * A007318 as infinite lower triangular matrices (assuming the top of the Pascal triangle A007318 is shifted from (0,0) to (1,1)).
From Petros Hadjicostas, Jul 26 2020: (Start)
T(n,k) = n*binomial(n-1, k-1) - binomial(n-2, k-1)*[n <> k] for 1 <= k <= n, where [ ] is the Iverson bracket.
Bivariate o.g.f.: x*y*(1 - x + x^2*(1 + y))/(1 - x*(1 + y))^2.
T(n,k) = T(n-1,k) + T(n-1,k-1) + binomial(n-1,k-1) for 2 <= k <= n with (n,k) <> (2,2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) - T(n-2,k-2) + 2*T(n-1,k-1) - 2*T(n-2,k-1) for 3 <= k <= n with (n,k) <> (3,3).
T(n,1) = n - 1 for n >= 2.
T(n,2) = A002522(n-1) for n >= 2.
T(n,3) = A164845(n-3) for n >= 3.
T(n,4) = A332697(n-3) for n >= 4.
T(n,n) = n for n >= 1.
T(n,n-1) = A028387(n-2) for n >= 2. (End)

A164900 a(2n) = 4*n*(n+1) + 3; a(2n+1) = 2*n*(n+2) + 3.

Original entry on oeis.org

3, 3, 11, 9, 27, 19, 51, 33, 83, 51, 123, 73, 171, 99, 227, 129, 291, 163, 363, 201, 443, 243, 531, 289, 627, 339, 731, 393, 843, 451, 963, 513, 1091, 579, 1227, 649, 1371, 723, 1523, 801, 1683, 883, 1851, 969, 2027, 1059, 2211, 1153
Offset: 0

Views

Author

Paul Curtz, Aug 30 2009

Keywords

Comments

a(n) = largest odd divisor of A059100(n+1). Proof: Observe that a(2n) = A059100(2n+1) and a(2n+1) = (A059100(2n+2))/2 and note that (A059100(m))/2 is odd for even m. - Jeremy Gardiner, Aug 25 2013
a(n) is also the denominator of the (n+1)-st largest circle in a special case of the Pappus chain inspired by the Yin-Yang symbol. See illustration in the links. - Kival Ngaokrajang, Jun 20 2015

Crossrefs

Programs

  • Magma
    [((-1)^n+3)*(n^2+2*n+3)/4: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {3, 3, 11, 9, 27, 19}, 50] (* Amiram Eldar, Aug 09 2022 *)
  • PARI
    vector(100,n,n--;(1/4)*((-1)^n+3)*(n^2+2*n+3)) \\ Derek Orr, Jun 27 2015

Formula

a(2n) = A164897(n); a(2n+1) = A058331(n+1).
a(n) = A164845(n-1)/A026741(n), n>0.
G.f.: ( -3-3*x-2*x^2-3*x^4-x^5 ) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Jan 21 2011
a(n) = ((-1)^n+3)*(n^2+2*n+3)/4. - Bruno Berselli, Jan 21 2011
From Amiram Eldar, Aug 09 2022: (Start)
a(n) = numerator(((n+1)^2 + 2)/2).
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(2))*Pi/sqrt(2) + tanh(Pi/sqrt(2))*Pi/(2*sqrt(2)) - 1)/2. (End)
E.g.f.: ((6 + 3*x + 2*x^2)*cosh(x) + (3 + 6*x + x^2)*sinh(x))/2. - Stefano Spezia, Oct 19 2024

A125027 Binomial transform of the "1,2,3,..." triangle.

Original entry on oeis.org

1, 3, 3, 9, 11, 6, 26, 32, 27, 10, 72, 86, 85, 54, 15, 192, 222, 233, 189, 95, 21, 496, 558, 597, 549, 371, 153, 28, 1248, 1374, 1473, 1446, 1160, 664, 231, 36, 3072, 3326, 3549, 3600, 3203, 2246, 1107, 332, 45, 7424, 7934, 8409, 8659, 8201, 6567, 4051, 1745, 459, 55, 17664, 18686, 19669, 20367, 20015, 17503, 12597, 6893, 2629, 615, 66
Offset: 1

Views

Author

Gary W. Adamson, Nov 15 2006

Keywords

Examples

			First few rows of the triangle:
   1;
   3,  3;
   9, 11,  6;
  26, 32, 27, 10;
  72, 86, 85, 54, 15;
  ...
		

Crossrefs

Cf. A072863 (first column), A000217 (diagonal), A164845 (subdiagonal).

Programs

  • Maple
    A27 := proc(n,k)
        option remember;
        if k>= 0 and k <=n then
            if k = 0 then
                1+procname(n-1,n-1) ;
            else
                procname(n,0)+k ;
            end if;
        else
            0;
        end if;
    end proc:
    A125027 := proc(n,k)
        add( binomial(n,j)*A27(j,k),j=k..n) ;
    end proc: # R. J. Mathar, May 21 2018
  • Mathematica
    A27[n_, k_] := A27[n, k] = If[k >= 0 && k <= n, If[k == 0, 1+A27[n-1, n-1], A27[n, 0]+k], 0];
    A125027[n_, k_] := Sum[Binomial[n, j]*A27[j, k], {j, k, n}];
    Table[A125027[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2024, after R. J. Mathar *)

Formula

Given the triangle (natural numbers in succession: 1; 2,3; 4,5,6; ...) as an infinite matrix M and P = Pascal's triangle as a lower triangular matrix, perform P*M, deleting the zeros.
The row sums s(n) = 1, 6, 26, 95, 312, 952, ... obey (-3*n+2)*s(n) +(9*n+7)*s(n-1) + 2*(-3*n-2)*s(n-2) = 0. - R. J. Mathar, May 21 2018
Showing 1-3 of 3 results.