cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A005448 Centered triangular numbers: a(n) = 3*n*(n-1)/2 + 1.

Original entry on oeis.org

1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, 3106, 3244, 3385, 3529
Offset: 1

Views

Author

N. J. A. Sloane, R. K. Guy, Dec 12 1974

Keywords

Comments

These are Hogben's central polygonal numbers
2
.P
3 n
Also the sum of three consecutive triangular numbers (A000217); i.e., a(4) = 19 = T4 + T3 + T2 = 10 + 6 + 3. - Robert G. Wilson v, Apr 27 2001
For k>2, Sum_{n=1..k} a(n) gives the sum pertaining to the magic square of order k. E.g., Sum_{n=1..5} a(n) = 1 + 4 + 10 + 19 + 31 = 65. In general, Sum_{n=1..k} a(n) = k*(k^2 + 1)/2. - Amarnath Murthy, Dec 22 2001
Binomial transform of (1,3,3,0,0,0,...). - Paul Barry, Jul 01 2003
a(n) is the difference of two tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-2)(n-1)(n)/6. - Alexander Adamchuk, May 20 2006
Partial sums are A006003(n) = n(n^2+1)/2. Finite differences are a(n+1) - a(n) = A008585(n) = 3n. - Alexander Adamchuk, Jun 03 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-2) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Equals (1, 2, 3, ...) convolved with (1, 2, 3, 3, 3, ...). a(4) = 19 = (1, 2, 3, 4) dot (3, 3, 2, 1) = (3 + 6 + 6 + 4). - Gary W. Adamson, May 01 2009
Equals the triangular numbers convolved with [1, 1, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
a(n) is the number of triples (w,x,y) having all terms in {0,...,n} and min(w+x,x+y,y+w) = max(w,x,y). - Clark Kimberling, Jun 14 2012
a(n) = number of atoms at graph distance <= n from an atom in the graphite or graphene network (cf. A008486). - N. J. A. Sloane, Jan 06 2013
In 1826, Shiraishi gave a solution to the Diophantine equation a^3 + b^3 + c^3 = d^3 with b = a(n) for n > 1; see A226903. - Jonathan Sondow, Jun 22 2013
For n > 1, a(n) is the remainder of n^2 * (n-1)^2 mod (n^2 + (n-1)^2). - J. M. Bergot, Jun 27 2013
The equation A000578(x) - A000578(x-1) = A000217(y) - A000217(y-2) is satisfied by y=a(x). - Bruno Berselli, Feb 19 2014
A242357(a(n)) = n. - Reinhard Zumkeller, May 11 2014
A255437(a(n)) = 1. - Reinhard Zumkeller, Mar 23 2015
The first differences give A008486. a(n) seems to give the total number of triangles in the n-th generation of the six patterns of triangle expansion shown in the link. - Kival Ngaokrajang, Sep 12 2015
Number of binary shuffle squares of length 2n which contains exactly two 1's. - Bartlomiej Pawlik, Sep 07 2023
The digital root has period 3 (1, 4, 1) (A146325), the same digital root as the centered 12-gonal numbers, or centered dodecagonal numbers A003154(n). - Peter M. Chema, Dec 20 2023

Examples

			From _Seiichi Manyama_, Aug 12 2017: (Start)
a(1) = 1:
      *
     / \
    /   \
   /     \
  *-------*
.................................................
a(2) = 4:
            *
           / \
          /   \
         /     \
        *---*---*
           / \
      *   /   \   *
     / \ /     \ / \
    /   *-------*   \
   /     \     /     \
  *-------*   *-------*
.................................................
a(3) = 10:
                  *
                 / \
                /   \
               /     \
              *---*---*
                 / \
            *   /   \   *
           / \ /     \ / \
          /   *---*---*   \
         /     \ / \ /     \
        *---*---*   *---*---*
           / \ /     \ / \
      *   /   *---*---*   \   *
     / \ /     \ / \ /     \ / \
    /   *-------*   *-------*   \
   /     \     /     \     /     \
  *-------*   *-------*   *-------*
.................................................
a(4) = 19:
                        *
                       / \
                      /   \
                     /     \
                    *---*---*
                       / \
                  *   /   \   *
                 / \ /     \ / \
                /   *---*---*   \
               /     \ / \ /     \
              *---*---*   *---*---*
                 / \ /     \ / \
            *   /   \---*---*   \   *
           / \ /     \ / \ /     \ / \
          /   *---*---*   *---*---*   \
         /     \ / \ /     \ / \ /     \
        *---*---*   *---*---*   *---*---*
           / \ /     \ / \ /     \ / \
      *   /   *---*---*   *---*---*   \   *
     / \ /     \ / \ /     \ / \ /     \ / \
    /   *-------*   *-------*   *-------*   \
   /     \     /     \     /     \     /     \
  *-------*   *-------*   *-------*   *-------*
(End)
		

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005448 n = 3 * n * (n - 1) `div` 2 + 1
    a005448_list = 1 : zipWith (+) a005448_list [3, 6 ..]
    -- Reinhard Zumkeller, Jun 20 2013
    
  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
  • Maple
    A005448 := n->(3*(n-1)^2+3*(n-1)+2)/2: seq(A005448(n), n=1..100);
    A005448 := -(1+z+z**2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation for offset 0
  • Mathematica
    FoldList[#1 + #2 &, 1, 3 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Join[{1,4},Total/@Partition[Accumulate[Range[50]],3,1]] (* Harvey P. Dale, Aug 17 2012 *)
    LinearRecurrence[{3, -3, 1}, {1, 4, 10}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 3 x^2/2)-1, {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
    3#+1&/@Accumulate[Range[0,50]] (* Harvey P. Dale, Nov 20 2024 *)
  • PARI
    {a(n)=3*(n^2-n)/2+1} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    isok(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ Michel Marcus, May 20 2020
    

Formula

Expansion of x*(1-x^3)/(1-x)^4.
a(n) = C(n+3, 3)-C(n, 3) = C(n, 0)+3*C(n, 1)+3*C(n, 2). - Paul Barry, Jul 01 2003
a(n) = 1 + Sum_{j=0..n-1} (3*j). - Xavier Acloque, Oct 25 2003
a(n) = A000217(n) + A000290(n-1) = (3*A016754(n) + 5)/8. - Lekraj Beedassy, Nov 05 2005
Euler transform of length 3 sequence [4, 0, -1]. - Michael Somos, Sep 23 2006
a(1-n) = a(n). - Michael Somos, Sep 23 2006
a(n) = binomial(n+1,n-1) + binomial(n,n-2) + binomial(n-1,n-3). - Zerinvary Lajos, Sep 03 2006
Row sums of triangle A134482. - Gary W. Adamson, Oct 27 2007
Narayana transform (A001263) * [1, 3, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=4, a(3)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A000217(n-1)*3 + 1 = A045943(n-1) + 1. - Omar E. Pol, Dec 27 2008
a(n) = a(n-1) + 3*n-3. - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = A306324. - Ant King, Jun 12 2012
a(n) = 2*a(n-1) - a(n-2) + 3. - Ant King, Jun 12 2012
a(n) = A101321(3,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: -1 + (2 + 3*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = A002061(n) + A000217(n-1). - Bruce J. Nicholson, Apr 20 2017
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 5*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 5/(2*e) - 1. (End)
a(n) = A000326(n) - n + 1. - Charlie Marion, Nov 21 2020

A004737 Concatenation of sequences (1,2,...,n-1,n,n-1,...,1) for n >= 1.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

R. Muller

Keywords

Comments

The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003
The ordinal transform of a sequence b_0, b_1, b_2, ... is the sequence a_0, a_1, a_2, ... where a_n is the number of times b_n has occurred in {b_0 ... b_n}.
From Artur Jasinski, Mar 07 2010: (Start)
This sequence is the even subset of A003983 for odd p=2,4,6,8,....
For the odd subset of A003983 see A004739. (End)
From Gary W. Adamson, Mar 30 2010: (Start)
Given the triangle rows: (1; 1,2,1; 1,2,3,2,1; ...) as polcoeff with offset 0:
q = (1 + 2x + x^2), r = (1 + 2x + 3x^2 + 2x^3 +x^4), etc.; then
(1 + 2x + 3x^2 + ...) = q(x) * q(x^2) * q(x^4) * q(x^8) * ...
..................... = r(x) * r(x^3) * r(x^9) * r(x^27) * ...
..................... = s(x) * s(x^4) * s(x^16)* s(x^64) * ...
... (End)
From L. Edson Jeffery, Jan 13 2012: (Start)
Let U_1(t)=1, U_2(t)=2*t, and U_r(t)=2*t*U_(r-1)(t)-U(r-2)(t), r>2, be Chebyshev polynomials of the second kind. For q>1 an integer, let N=2*q and x_k=cos((2*k-1)*Pi/N), and define the ordered column vectors V_k=[U_k(x_1), U_k(x_2), ..., U_k(x_q)]^T, k=1,...,q, where A^T denotes the transpose of matrix A. Let E_N=[V_1, V_2, ..., V_q] be the q X q matrix formed from the ordered components of the V_k. E_N contains the joint spectra of the Danzer basis (see [Jeffery]) associated with N. Let M_N=(1/q)*[E_N]^T*E_N. For the trivial case q=1, let M_2=[1]. CONJECTURE: E_N and M_N are always integral and symmetric, with M_N having diagonal entries {1,2,...} beginning at entries 1,j (j odd) in the first row and i,1 (i odd) in the first column and with zeros elsewhere. If N is allowed to increase without bound, and assuming the conjecture is true, then triangle A004737 emerges in its entirety from the successive antidiagonals containing those entries [M_N]_(i,j) such that i+j=2*v, for each v in {1,2,...,floor((q+1)/2)}. For example, for N=18 and q=9 (omitting the zeros for clarity),
M_18=[
(1 1 1 1 1);
( 2 2 2 2 );
(1 3 3 3 3);
( 2 4 4 4 );
(1 3 5 5 5);
( 2 4 6 6 );
(1 3 5 7 7);
( 2 4 6 8 );
(1 3 5 7 9)],
from which the first five rows of the sequence can be read off in succession. (End)
T(n,k) = min(n,k). The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 13 2013
Expanded form of T(2,k) k=0,1,...,2m for ascending m-nomial triangles. - Bob Selcoe, Feb 07 2014
Terms in the first nine rows of the triangle can be duplicated by performing (111...)^2 with <= nine ones. By way of example, (11111)^2 = 123454321. - Gary W. Adamson, Mar 27 2015

Examples

			From _Boris Putievskiy_, Jan 13 2013: (Start)
The start of the sequence as a table:
  1 1 1 1 1 1 ...
  1 2 2 2 2 2 ...
  1 2 3 3 3 3 ...
  1 2 3 4 4 4 ...
  1 2 3 4 5 5 ...
  1 2 3 4 5 6 ...
  ...
The start of the sequence as an irregular triangle array read by rows:
  1;
  1,2,1;
  1,2,3,2,1;
  1,2,3,4,3,2,1;
  1,2,3,4,5,4,3,2,1;
  1,2,3,4,5,6,5,4,3,2,1;
  ...
Row number k contains 2*k-1 numbers: 1,2,...,k-1,k,k-1,...,1. (End)
The sequence of fractions A196199/A004737 = 0/1, -1/1, 0/2, 1/1, -2/1, -1/2, 0/3, 1/2, 2/1, -3/1, -2/2, -1/3, 0/4, 1/3, 2/2, 3/1, -4/4. -3/2, ... contains every rational number (infinitely often) [Laczkovich]. - _N. J. A. Sloane_, Oct 09 2013
		

References

  • Miklós Laczkovich, Conjecture and Proof, TypoTex, Budapest, 1998. See Chapter 10.
  • F. Smarandache, "Numerical Sequences", University of Craiova, 1975.

Crossrefs

Cf. A242357, A000290 (row sums).

Programs

  • Haskell
    import Data.List (inits)
    a004737 n = a004737_list !! (n-1)
    a004737_list = concatMap f $ tail $ inits [1..]
       where f xs = xs ++ tail (reverse xs)
    -- Reinhard Zumkeller, May 11 2014, Mar 26 2011
    
  • Mathematica
    Table[Min[n - #^2, (# + 1)^2 - n + 1] &@ Floor[Sqrt[n - 1]], {n, 105}] (* or *)
    Table[Floor@ # - Abs[n - Floor[#]^2 - Floor@ # - 1] + 1 &@ Sqrt[n - 1], {n, 105}] (* Michael De Vlieger, Oct 21 2016 *)
    Table[Join[Range[n],Range[n-1,1,-1]],{n,20}]//Flatten (* Harvey P. Dale, Dec 27 2019 *)
  • PARI
    a(n) = n--;my(m=sqrtint(n));m+1-abs(n-m^2-m) \\ David A. Corneth, Oct 18 2016

Formula

a(A002061(n)) = n; a(A000290(n)) = a(A002522(n)) = 1. - Reinhard Zumkeller, Mar 10 2006
a(n) = if n<3 then 1 else (if a(n-1)=1 then 1 + 0^(a(n-2)-1) else a(n-1) - 0^X + (a(n-1)-a(n-2))*(1 - 0^X)), where X = A003059(n-1)-a(n-1). - Reinhard Zumkeller, Mar 10 2006
Let b(n) = floor(sqrt(n-1)). Then a(n) = min(n - b(n)^2, (b(n)+1)^2 - n + 1). - Franklin T. Adams-Watters, Jun 09 2006
Ordinal transform of A004741. - Franklin T. Adams-Watters, Aug 28 2006
If the sequence is read as a triangular array, beginning [1]; [1,2,1]; [1,2,3,2,1]; ..., then the o.g.f. is (1+qx)/((1-x)(1-qx)(1-q^2x)) = 1 + x(1 + 2q + q^2) + x^2(1 + 2q + 3q^2 + 2q^3 +q^4) + .... The row polynomials for this triangle are (1 + q + ... + q^n)^2 =[n,2]A008967).%20-%20_Peter%20Bala">q + q[n-1,2]_q, where [n,2]_q are Gaussian polynomials (see A008967). - _Peter Bala, Sep 23 2007
a(n) = floor(sqrt(n-1)) - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1)) - 1| + 1. - Boris Putievskiy, Jan 13 2013
Read as a triangular array, then T(n,k) = n - |n-k-1|; T(n,0) = 1; T(n,n-1) = n. - Juan Pablo Herrera P., Oct 17 2016

Extensions

More terms from Patrick De Geest, Jun 15 1998

A104249 a(n) = (3*n^2 + n + 2)/2.

Original entry on oeis.org

1, 3, 8, 16, 27, 41, 58, 78, 101, 127, 156, 188, 223, 261, 302, 346, 393, 443, 496, 552, 611, 673, 738, 806, 877, 951, 1028, 1108, 1191, 1277, 1366, 1458, 1553, 1651, 1752, 1856, 1963, 2073, 2186, 2302, 2421, 2543, 2668, 2796, 2927, 3061, 3198, 3338, 3481
Offset: 0

Views

Author

Thomas Wieder, Feb 26 2005

Keywords

Comments

Second differences are all 3.
Related to the sequence of odd numbers A005408 since for these numbers the first differences are all 2.
Column 2 of A114202. - Paul Barry, Nov 17 2005
Equals third row of A167560 divided by 2. - Johannes W. Meijer, Nov 12 2009
A242357(a(n)) = n + 1. - Reinhard Zumkeller, May 11 2014
Also, this sequence is related to A011379, for n>0, by A011379(n) = n*a(n) - Sum_{i=0..n-1} a(i). - Bruno Berselli, Jul 08 2015
The number of Hamiltonian nonisomorphic unfoldings in an n-gonal Archimedean antiprism. See sequence A284647. - Rick Mabry, Apr 10 2021

Examples

			The sequence of first differences delta_a(n) = a(n+1) - a(n) is 2, 5, 8, 11, 14, 17, 20, 23, 26, ...
The sequence of second differences delta_delta_a(n) = a(n+2) - 2*a(n+1) + a(n) is: 3, 3, 3, 3, 3, 3, 3, ... E.g., 78 - 2*58 + 41 = 3.
		

Crossrefs

Counts special cases of A284647.

Programs

  • Haskell
    a104249 n = n*(3*n+1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
    
  • Magma
    [(3*n^2+n+2)/2: n in [0..50]]; // Vincenzo Librandi, May 09 2011
    
  • Maple
    a := proc (n) local i, u; option remember; u[0] := 1; u[1] := 3; u[2] := 8; for i from 3 to n do u[i] := -(4*u[i-3]-8*u[i-2]-2*u[i-1]+(-2*u[i-3]+2*u[i-2]-u[i-1])*i)/i end do; [seq(u[i],i = 0 .. n)] end proc;
  • Mathematica
    A104249[n_] := (3*n^2 + n + 2)/2; Table[A104249[n], {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
    LinearRecurrence[{3,-3,1},{1,3,8},70] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    a(n)=n*(3*n+1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1 + 2*x^2)/(1 - x)^3.
Recurrence: (n+3)*u(n+3) + (-5-n)*u(n+2)*(-2+2*n)*u(n+1) + (-2-2*n)*u(n) = 0 for n >= 0 with u(0) = 1, u(1) = 3, and u(2) = 8.
From Paul Barry, Nov 17 2005: (Start)
a(0) = 1, a(n) = a(n-1) + 3*n - 1 for n > 0;
a(n) = Sum_{k=0..n} C(n, k)*C(2, k)*J(k+1), where J(n) = A001045(n). (End)
Binomial transform of [1, 2, 3, 0, 0, 0, ...]. - Gary W. Adamson, Apr 23 2008
E.g.f.: exp(x)*(2 + 4*x + 3*x^2)/2. - Stefano Spezia, Apr 10 2021

A143689 a(n) = (3*n^2 - n + 2)/2.

Original entry on oeis.org

1, 2, 6, 13, 23, 36, 52, 71, 93, 118, 146, 177, 211, 248, 288, 331, 377, 426, 478, 533, 591, 652, 716, 783, 853, 926, 1002, 1081, 1163, 1248, 1336, 1427, 1521, 1618, 1718, 1821, 1927, 2036, 2148, 2263, 2381, 2502, 2626, 2753, 2883, 3016, 3152, 3291
Offset: 0

Views

Author

Gary W. Adamson, Aug 29 2008

Keywords

Comments

Equals left border of triangle A033292.
Equals binomial transform of [1, 1, 3, 0, 0, 0, ...].
A242357(a(n)) = 1. - Reinhard Zumkeller, May 11 2014
These might be called "trisected pentagonal numbers": A figurate pentagonal number is composed of three triangles, of which the central one is the largest, and the removal of the triangular frame (3*n) of the central triangle trisects the figure. This is reflected in the formula a(n) = A000326(n+1) - 3*n. See illustration in links. - John Elias, May 27 2022

Crossrefs

a(n) = A000326(n+1) - 3n. Third column of A107111.

Programs

Formula

a(n) = A000326(n+1) - 3*n. (A000326 are the pentagonal numbers.)
a(n) = (3*n^2 - n + 2)/2 = A027599(n+1)/2. - R. J. Mathar, Sep 03 2008
a(n) = a(n-1) + 3*n - 2 (with a(0)=1). - Vincenzo Librandi, Nov 25 2010
a(n) = 2*a(n-1) - a(n-2) + 3.
O.g.f.: (1-x+3*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
a(n) = A104249(-n). - Bruno Berselli, Jul 08 2015
a(n) = binomial(n,2) + n^2 + 1 = A152947(n+1) + A000290(n). - Franck Maminirina Ramaharo, Mar 01 2018
E.g.f.: exp(x)*(2 + 2*x + 3*x^2)/2. - Stefano Spezia, Apr 19 2025

Extensions

Index of A000326 in definition, formula and example corrected by R. J. Mathar, Sep 03 2008
Showing 1-5 of 5 results.