Juan Pablo Herrera P. has authored 3 sequences.
A277951
Triangle read by rows, in which row n gives coefficients in expansion of ((x^n - 1)/(x - 1))^6.
Original entry on oeis.org
1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216, 120, 56, 21, 6, 1, 1, 6, 21, 56, 126, 246, 426, 666, 951, 1246, 1506, 1686, 1751, 1686, 1506, 1246, 951, 666, 426, 246, 126, 56, 21, 6, 1
Offset: 1
Triangle starts:
1;
1, 6, 15, 20, 15, 6, 1;
1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1;
1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216, 120, 56, 21, 6, 1.
-
Table[CoefficientList[Series[((x^n - 1)/(x - 1))^6, {x, 0, 6 n}], x], {n, 10}] // Flatten
-
row(n) = Vec(((1 - x^n)/(1 - x))^6);
tabf(nn) = for (n=1, nn, print(row(n)));
A277950
Triangle read by rows, in which row n gives coefficients in expansion of ((x^n - 1)/(x - 1))^5.
Original entry on oeis.org
1, 1, 5, 10, 10, 5, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1
Offset: 1
Triangle starts:
1;
1, 5, 10, 10, 5, 1;
1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1;
1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1;
1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1;
-
Table[CoefficientList[Series[((x^n - 1)/(x - 1))^5, {x, 0, 5 n}], x], {n, 10}] // Flatten
-
row(n) = Vec(((1 - x^n)/(1 - x))^5); tabf(nn) = for (n=1, nn, print(row(n)));
A277949
Triangle read by rows, in which row n gives coefficients in expansion of ((x^n - 1)/(x - 1))^4.
Original entry on oeis.org
1, 1, 4, 6, 4, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1
Offset: 1
Triangle starts:
1;
1, 4, 6, 4, 1;
1, 4, 10, 16, 19, 16, 10, 4, 1;
1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1;
1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1;
1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1.
...
There are T(3,2) = 10 ways to select 2 cards from two sets of four playing cards ABCD, namely, {AA}, {AB}, {AC}, {AD}, {BB}, {BC}, {BD}, {CC}, {CD}, and {DD}.
-
Table[CoefficientList[Series[((x^n - 1)/(x - 1))^4, {x, 0, 4 n}], x], {n, 6}] // Flatten (* Michael De Vlieger, Nov 10 2016 *)
-
row(n) = Vec(((1 - x^n)/(1 - x))^4);
tabf(nn) = for (n=1, nn, print(row(n)));
Comments