cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A045991 a(n) = n^3 - n^2.

Original entry on oeis.org

0, 0, 4, 18, 48, 100, 180, 294, 448, 648, 900, 1210, 1584, 2028, 2548, 3150, 3840, 4624, 5508, 6498, 7600, 8820, 10164, 11638, 13248, 15000, 16900, 18954, 21168, 23548, 26100, 28830, 31744, 34848, 38148, 41650, 45360, 49284, 53428, 57798, 62400, 67240, 72324
Offset: 0

Views

Author

Keywords

Comments

Number of edges in the line graph of the complete bipartite graph of order 2n, L(K_n,n). - Roberto E. Martinez II, Jan 07 2002
Number of edges of the Cartesian product of two complete graphs K_n X K_n. - Roberto E. Martinez II, Jan 07 2002
That is, number of edges in the n X n rook graph. - Eric W. Weisstein, Jun 20 2017
n such that x^3 + x^2 + n factors over the integers. - James R. Buddenhagen, Apr 19 2005
Also the number of triangles in a 2 X n grid of points and therefore also (n choose 2) * (n choose 1) * 2, or (2n choose 3) - 2*(n choose 3). - Joshua Zucker, Jan 11 2006
Nonnegative X values of solutions to the equation (X-Y)^3-XY=0. To find Y values: b(n)=(n+1)*n^2 (see A011379). I proved that, if(X,Y) is different from (0,0) and m=2, 4, 6, 8, 10, 12,..., then the equation (X-Y)^m-XY=0,... has no solution. - Mohamed Bouhamida, May 10 2006
For n>=1, a(n) is equal to the number of functions f:{1,2,3}->{1,2,...,n} such that for a fixed x in {1,2,3} and a fixed y in {1,2,...,n} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
a(n) equals the coefficient of log(2) in 2F1(n-1,n-1,n+1,-1). - John M. Campbell, Jul 16 2011
Define the infinite square array m(n,k) = (n-k)^2 for 1<=k<=n below the diagonal and m(n,k) = (k+n)(k-n) for 1<=n<=k above the diagonal. Then a(n) = Sum_{k=1..n} m(n,k) + Sum_{r=1..n} m(r,n), the "hook sum" of the terms left from m(n,n) and above m(n,n). - J. M. Bergot, Aug 16 2013
Partial sums of A049451. - Bruno Berselli, Feb 10 2014
Volume of an extruded rectangular brick with side lengths n, n and n-1. - Luciano Ancora, Jun 24 2015

Crossrefs

Cf. A011379, A047929, A114364 (essentially the same).

Programs

Formula

G.f.: 2*x^2*(x+2)/(-1+x)^4 = 6/(-1+x)^4+10/(-1+x)^2+14/(-1+x)^3+2/(-1+x). - R. J. Mathar, Nov 19 2007
a(n) = floor(n^5/(n^2+n+1)). - Gary Detlefs, Feb 10 2010
a(n) = 4*binomial(n,2) + 6*binomial(n,3). - Gary Detlefs, Mar 25 2012
a(n+1) = 2*A006002(n). - R. J. Mathar, Oct 31 2012
a(n) = (A000217(n-1)+A000217(n))*(A000217(n-1)-A000217(n-2)). - J. M. Bergot, Oct 31 2012
From Wesley Ivan Hurt, May 19 2015: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = Sum_{k=0..n-1} Sum_{i=n-k-1..n+k-1} i. (End)
Sum_{n>=2} 1/a(n) = 2 - Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=2} (-1)^n/a(n) = Pi^2/12 + 2*log(2) - 2. - Amiram Eldar, Jul 05 2020
E.g.f.: exp(x)*x^2*(2 + x). - Stefano Spezia, May 20 2021
Product_{n>=2} (1 - 1/a(n)) = A146485. - Amiram Eldar, Nov 22 2022
From J.S. Seneschal, Jun 21 2024: (Start)
a(n) = (n-1)*A000290(n).
a(n) = n*A002378(n-1).
a(n) = A011379(n) - A001105(n). (End)

A011379 a(n) = n^2*(n+1).

Original entry on oeis.org

0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0

Views

Author

Glen Burch (gburch(AT)erols.com), Felice Russo

Keywords

Comments

(1) a(n) = sum of second string of n triangular numbers - sum of first n triangular numbers, or the 2n-th partial sum of triangular numbers (A000217) - the n-th partial sum of triangular numbers (A000217). The same for natural numbers gives squares. (2) a(n) = (n-th triangular number)*(the n-th even number) = n(n+1)/2 * (2n). - Amarnath Murthy, Nov 05 2002
Let M(n) be the n X n matrix m(i,j)=1/(i+j+x), let P(n,x) = (Product_{i=0..n-1} i!^2)/det(M(n)). Then P(n,x) is a polynomial with integer coefficients of degree n^2 and a(n) is the coefficient of x^(n^2-1). - Benoit Cloitre, Jan 15 2003
Y values of solutions of the equation: (X-Y)^3-X*Y=0. X values are a(n)=n*(n+1)^2 (see A045991) - Mohamed Bouhamida, May 09 2006
a(2d-1) is the number of self-avoiding walk of length 3 in the d-dimensional hypercubic lattice. - Michael Somos, Sep 06 2006
a(n) mod 10 is periodic 5: repeat [0, 2, 2, 6, 0]. - Mohamed Bouhamida, Sep 05 2009
This sequence is related to A005449 by a(n) = n*A005449(n)-sum(A005449(i), i=0..n-1), and this is the case d=3 in the identity n^2*(d*n+d-2)/2 - Sum_{k=0..n-1} k*(d*k+d-2)/2 = n*(n+d)*(2*d*n+d-3)/6. - Bruno Berselli, Nov 18 2010
Using (n, n+1) to generate a primitive Pythagorean triangle, the sides will be 2*n+1, 2*(n^2+n), and 2*n^2+2*n+1. Inscribing the largest rectangle with integral sides will have sides of length n and n^2+n. Side n is collinear to side 2*n+1 of the triangle and side n^2+n is collinear to side 2*(n^2+n) of the triangle. The areas of theses rectangles are a(n). - J. M. Bergot, Sep 22 2011
a(n+1) is the sum of n-th row of the triangle in A195437. - Reinhard Zumkeller, Nov 23 2011
Partial sums of A049450. - Omar E. Pol, Jan 12 2013
From Jon Perry, May 11 2013: (Start)
Define a 'stable brick triangle' as:
-----
| c |
---------
| a | | b |
----------
with a, b, c > 0 and c <= a + b. This can be visualized as two bricks with a third brick on top. The third brick can only be as strong as a+b, otherwise the wall collapses - for example, (1,2,4) is unstable.
a(n) gives the number of stable brick triangles that can be formed if the two supporting bricks are 1 <= a <= n and 1 <= b <= n: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_c 1 = n^3 + n^2 as given in the Adamchuk formula.
So for i=j=n=2 we have 4:
1 2 3 4
2 2 2 2 2 2 2 2
For example, n=2 gives 2 from [a=1,b=1], 3 from both [a=1,b=2] and [a=2,b=1] and 4 from [a=2,b=2] so a(2) = 2 + 3 + 3 + 4 = 12. (End)
Define the infinite square array m(n,k) by m(n,k) = (n-k)^2 if n >= k >= 0 and by m(n,k) = (k+n)*(k-n) if 0 <= n <= k. This contains A120070 below the diagonal. Then a(n) = Sum_{k=0..n} m(n,k) + Sum_{r=0..n} m(r,n), the "hook sum" of the terms to the left of m(n,n) and above m(n,n) with irrelevant (vanishing) terms on the diagonal. - J. M. Bergot, Aug 16 2013
a(n) is the sum of all pairs with repetition drawn from the set of odd numbers 2*n-3. This is similar to A027480 but using the odd integers instead. Example using n=3 gives the odd numbers 1,3,5: 1+1, 1+3, 1+5, 3+3, 3+5,5+5 having a total of 36=a(3). - J. M. Bergot, Apr 05 2016
a(n) is the first Zagreb index of the complete graph K[n+1]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 07 2016
a(n-2) is the maximum sigma irregularity over all trees with n vertices. The extremal graphs are stars. (The sigma irregularity of a graph is the sum of squares of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 14 2023

Examples

			a(3) = 3^2+3^3 = 36.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.

Crossrefs

Cf. A011379, A181617, A270205 (sigma irregularities of maximal k-degenerate graphs).

Programs

Formula

a(n) = 2*A002411(n).
a(n) = Sum_{j=1..n} (Sum_{i=1..n} (i+j)), row sums of A126890 skipping numbers in the first column. - Alexander Adamchuk, Oct 12 2004
Sum_{n>0} 1/a(n) = (Pi^2 - 6)/6 = 0.6449340... [Jolley eq 272] - Gary W. Adamson, Dec 22 2006
a(n) = 2*n*binomial(n+1,2) = 2*n*A000217(n). - Arkadiusz Wesolowski, Feb 10 2012
G.f.: 2*x*(1 + 2*x)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
a(n) = A000330(n) + A002412(n) = A000292(n) + A002413(n). - Omar E. Pol, Jan 11 2013
a(n) = A245334(n+1,2), n > 0. - Reinhard Zumkeller, Aug 31 2014
Sum_{n>=1} 1/a(n) = A013661-1. - R. J. Mathar, Oct 18 2019 [corrected by Jason Yuen, Aug 04 2024]
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 + Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 04 2020
E.g.f.: exp(x)*x*(2 + 4*x + x^2). - Stefano Spezia, May 20 2021
a(n) = n*A002378(n) = A000578(n) + A000290(n). - J.S. Seneschal, Jun 18 2024

A096338 a(n) = (2/(n-1))*a(n-1) + ((n+5)/(n-1))*a(n-2) with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 6, 10, 20, 30, 50, 70, 105, 140, 196, 252, 336, 420, 540, 660, 825, 990, 1210, 1430, 1716, 2002, 2366, 2730, 3185, 3640, 4200, 4760, 5440, 6120, 6936, 7752, 8721, 9690, 10830, 11970, 13300, 14630, 16170, 17710, 19481, 21252, 23276, 25300, 27600
Offset: 0

Views

Author

Benoit Cloitre, Jun 28 2004

Keywords

Comments

Without the leading zero, Poincaré series [or Poincare series] P(C_{2,2}; t).
Starting (1, 2, 6, ...) = partial sums of the tetrahedral numbers, A000292 with repeats: (1, 1, 4, 4, 10, 10, 20, 20, 35, 35, ...). - Gary W. Adamson, Mar 30 2009
Starting with 1 = [1, 2, 3, ...] convolved with the aerated triangular series, [1, 0, 3, 0, 6, ...]. - Gary W. Adamson, Jun 11 2009
From Alford Arnold, Oct 14 2009: (Start)
a(n) is also related to Dyck Paths. Note that
0 1 2 6 10 20 30 50 70 105 ...
minus
0 0 0 0 1 2 6 10 20 30 ...
equals
0 1 2 6 9 18 24 40 50 75 ... A028724
(End)
The Kn11, Kn12, Kn13, Fi1 and Ze1 triangle sums of A139600 are related to the sequence given above; e.g., Ze1(n) = 3*A096338(n-1) - 3*A096338(n-3) + 9*A096338(n-4), with A096338(n) = 0 for n <= -1. For the definition of these triangle sums, see A180662. - Johannes W. Meijer, Apr 29 2011

Crossrefs

Programs

  • Maple
    A096338:=n->-(floor(n/2)+1)*(floor(n/2)+2)*(floor(n/2)+3)*(3*floor(n/2)-2*n)/12; seq(A096338(k),k=0..100); # Wesley Ivan Hurt, Oct 04 2013
  • Mathematica
    t = {0, 1}; Do[AppendTo[t, (2/(n - 1))*t[[-1]] + ((n + 5)/(n - 1))*t[[-2]]], {n, 2, 50}]; t (* T. D. Noe, Oct 08 2013 *)
    CoefficientList[Series[x/((1 - x)^2*(1 - x^2)^3), {x, 0, 45}], x] (* or *)
    Nest[Append[#1, (2/(#2 - 1))*#1[[-1]] + ((#2 + 5)/(#2 - 1))*#1[[-2]] ] & @@ {#, Length@ #} &, {0, 1}, 44] (* Michael De Vlieger, May 30 2018 *)

Formula

G.f.: x/((1-x)^2*(1-x^2)^3). - Ralf Stephan, Jun 29 2004
a(n) = Sum_{k=1..floor(n/2)+1} ( Sum_{i=1..k} i*(n-2*k+2) ) = -(floor(n/2)+1) * (floor(n/2)+2) * (floor(n/2)+3) * (3*floor(n/2) - 2*n)/12. - Wesley Ivan Hurt, Sep 26 2013
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8). - Wesley Ivan Hurt, Nov 26 2020
128*a(n) = 8*n^3 +94/3*n^2 +44*n +15 +2/3*n^4 -2*(-1)^n*n^2 -12*(-1)^n*n -15*(-1)^n. - R. J. Mathar, Mar 23 2021

A088855 Triangle read by rows: number of symmetric Dyck paths of semilength n with k peaks.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 12, 18, 18, 12, 4, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1
Offset: 1

Views

Author

Emeric Deutsch, Nov 24 2003

Keywords

Comments

Rows 2, 4, 6, ... give A088459.
Diagonal sums are in A088518(n-1). - Philippe Deléham, Jan 04 2009
Row sums are in A001405(n). - Philippe Deléham, Jan 04 2009
Subtriangle (1 <= k <= n) of triangle T(n,k), 0 <= k <= n, read by rows, given by A101455 DELTA A056594 := [0,1,0,-1,0,1,0,-1,0,1,0,-1,0,...] DELTA [1,0,-1,0,1,0,-1,0,1,0,-1,0,1,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
Also, number of symmetric noncrossing partitions of an n-set with k blocks. - Andrew Howroyd, Nov 15 2017
From Roger Ford, Oct 17 2018: (Start)
T(n,k) = t(n+2,d) where t(n,d) is the number of different semi-meander arch depth listings with n top arches and with d the depth of the deepest embedded arch.
Examples: /\ semi-meander with 5 top arches
//\\ /\ 2 arches are at depth=0 (no covering arches)
///\\\ //\\ 2 arches are at depth=1 (1 covering arch)
(0)(1)(2) 1 arch is at depth=2 (2 covering arches)
2, 2, 1 is the listing for this t(5,2)
/\ semi-meander with 5 top arches
/ \ (0)(1)
/\ /\ //\/\\ 3, 2 is the listing for this t(5,1)
a(6,5) = t(8,5)= 3 {2,1,1,1,2,1; 2,1,2,1,1,1; 3,1,1,1,1,1} (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  2,   1;
  1,  2,  4,   2,   1;
  1,  3,  6,   6,   3,    1;
  1,  3,  9,   9,   9,    3,    1;
  1,  4, 12,  18,  18,   12,    4,    1;
  1,  4, 16,  24,  36,   24,   16,    4,    1;
  1,  5, 20,  40,  60,   60,   40,   20,    5,    1;
  1,  5, 25,  50, 100,  100,  100,   50,   25,    5,    1;
  1,  6, 30,  75, 150,  200,  200,  150,   75,   30,    6,   1;
  1,  6, 36,  90, 225,  300,  400,  300,  225,   90,   36,   6,   1;
  1,  7, 42, 126, 315,  525,  700,  700,  525,  315,  126,  42,   7,  1;
  1,  7, 49, 147, 441,  735, 1225, 1225, 1225,  735,  441, 147,  49,  7, 1;
  1,  8, 56, 196, 588, 1176, 1960, 2450, 2450, 1960, 1176, 588, 196, 56, 8, 1;
  ...
a(6,2)=3 because we have UUUDDDUUUDDD, UUUUDDUUDDDD, UUUUUDUDDDDD, where
U=(1,1), D=(1,-1).
		

Crossrefs

Cf. A001405 (row sums), A088459, A088518 (diagonal sums).
Column 2 is A008619, column 3 is A002620, column 4 is A028724, column 5 is A028723, column 6 is A028725, column 7 is A331574.

Programs

  • Magma
    [(&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    T[n_, k_] := Binomial[Quotient[n-1, 2], Quotient[k-1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]];
    Table[T[n, k], {n,13}, {k,n}]//Flatten (* Jean-François Alcover, Jun 07 2018 *)
  • PARI
    T(n,k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ Andrew Howroyd, Nov 15 2017
    
  • Sage
    def A088855(n,k): return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
    flatten([[A088855(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 08 2022

Formula

T(n, k) = binomial(floor(n'), floor(k'))*binomial(ceiling(n'), ceiling(k')), where n' = (n-1)/2, k' = (k-1)/2.
G.f.: 2*u/(u*v + sqrt(x*y*u*v)) - 1, where x = 1+z+t*z, y = 1+z-t*z, u = 1-z+t*z, v = 1-z-t*z.
Triangle T(n,k), 0 <= k <= n, given by A101455 DELTA A056594 begins: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,2,1; 0,1,2,4,2,1; 0,1,3,6,6,3,1; 0,1,3,9,9,9,3,1; ... - Philippe Deléham, Jan 03 2009
From G. C. Greubel, Apr 08 2022: (Start)
T(n, n-k+1) = T(n, k).
T(2*n-1, n) = A018224(n-1), n >= 1.
T(2*n, n) = A005566(n-1), n >= 1. (End)

Extensions

Keyword:tabl added Philippe Deléham, Jan 25 2010

A171608 Triangle by columns, T(n,k); (..., n, (n+1)) preceded by (n-1) zeros, as an infinite lower triangular matrix.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Dec 12 2009

Keywords

Comments

Let the triangle = M as an infinite lower triangular matrix.
M * (1, 2, 3, ...) = A002620: (1, 2, 4, 6, 9, 12, 16, 20, ...);
M * (1, 3, 5, ...) = A084265: (1, 2, 6, 9, 15, 20, 28, 35, ...);
M * (1, 3, 6, ...) = A028724: (1, 2, 6, 9, 18, 24, 40, 50, ...);
Limit_{n->infinity} M^n = A171609: (1, 2, 4, 6, 12, 16, 24, 30, ...).

Examples

			First few rows of the triangle:
  1;
  2, 0;
  0, 2, 0;
  0, 3, 0, 0;
  0, 0, 3, 0, 0;
  0, 0, 4, 0, 0, 0;
  0, 0, 0, 4, 0, 0, 0;
  0, 0, 0, 5, 0, 0, 0, 0;
  0, 0, 0, 0, 5, 0, 0, 0, 0;
  0, 0, 0, 0, 6, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0;
  0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0;
  ...
		

Crossrefs

Programs

  • Maple
    A171609 := proc(n,k)
        if k  = ceil(n/2) then
            floor( (n+2)/2) ;
        else
            0;
        end if;
    end proc:
    seq(seq( A171609(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 23 2021

Formula

Triangle by columns, T(n,k); (..., n, (n+1)) preceded by (n-1) zeros, as an infinite lower triangular matrix.

Extensions

More terms from Micah Manary, Aug 07 2022

A028725 a(n) = floor(n/2) * floor((n-1)/2) * floor((n-2)/2) * floor((n-3)/2) * floor((n-4)/2) / 12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 12, 24, 60, 100, 200, 300, 525, 735, 1176, 1568, 2352, 3024, 4320, 5400, 7425, 9075, 12100, 14520, 18876, 22308, 28392, 33124, 41405, 47775, 58800, 67200, 81600, 92480, 110976, 124848, 148257, 165699, 194940, 216600, 252700, 279300
Offset: 0

Views

Author

Keywords

Crossrefs

Bisections: A004282, A004302.

Programs

  • Magma
    [(&*[Floor((n-j)/2):j in [0..4]])/12: n in [0..60]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    Table[(Times@@Floor/@(n/2-Range[0,4]/2))/12,{n,0,50}] (* or *) LinearRecurrence[ {1,5,-5,-10,10,10,-10,-5,5,1,-1}, {0,0,0,0,0,0,1,3,12,24,60}, 50] (* Harvey P. Dale, Jun 26 2012 *)
  • PARI
    concat([0,0,0,0,0,0], Vec(x^6*(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^6*(x+1)^5) + O(x^100))) \\ Colin Barker, Mar 01 2015
    
  • SageMath
    [(1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5) for n in (0..60)] # G. C. Greubel, Apr 08 2022

Formula

a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11), with a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=1, a(7)=3, a(8)=12, a(9)=24, a(10)=60. - Harvey P. Dale, Jun 26 2012
G.f.: x^6*(1+2*x+4*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^5). - Colin Barker, Mar 01 2015
From R. J. Mathar, Sep 23 2021: (Start)
a(2*n+1) = A004282(n-2).
a(2*n) = A004302(n-2).
a(n) = A028724(n)*A002620(n-4)/6. (End)
From G. C. Greubel, Apr 08 2022: (Start)
a(n) = (1/768)*((-1)^n*(45 -65*n +38*n^2 -10*n^3 +n^4) -45 +193*n -230*n^2 +114*n^3 -25*n^4 +2*n^5).
E.g.f.: (1/768)*((45 +36*x +15*x^2 +4*x^3 +x^4)*exp(-x) + (-45 +54*x -33*x^2 + 14*x^3 -5*x^4 +2*x^5)*exp(x)). (End)

A124458 Triangular array resulting from summing three repeated Pascal sequences; related to the generalized pentagonal sequence (A001318) and the classical modular tessellation (cf. A054886).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 5, 2, 1, 3, 7, 7, 6, 2, 1, 3, 8, 12, 9, 7, 2, 1, 3, 10, 15, 18, 11, 8, 2, 1, 3, 11, 22, 24, 25, 13, 9, 2, 1, 3, 13, 26, 40, 35, 33, 15, 10, 2, 1
Offset: 1

Views

Author

Alford Arnold, Nov 04 2006

Keywords

Comments

The third diagonal is the generalized pentagonal sequence A001318

Examples

			Consider
1.......1.......6.......6.......21......21....
........1.......1.......6.......6.......21....
................1.......1.......6.......6.....
which sums to
1.....2....8.....13....33....48....,
a diagonal of A124458
		

Crossrefs

A093039 Sequence resulting from a sum of three repeated binomial(n+3,4) sequences.

Original entry on oeis.org

1, 2, 7, 11, 25, 35, 65, 85, 140, 175, 266, 322, 462, 546, 750, 870, 1155, 1320, 1705, 1925, 2431, 2717, 3367, 3731, 4550, 5005, 6020, 6580, 7820, 8500, 9996, 10812, 12597, 13566, 15675, 16815, 19285, 20615, 23485, 25025, 28336, 30107, 33902
Offset: 1

Views

Author

Alford Arnold, May 08 2004

Keywords

Comments

Euler transform of length 3 sequence [2,k,-1] with k=4 (cf. A028724 for k=3). - Georg Fischer, Nov 28 2020

Examples

			b(n) = 1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126,126
     + 0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126
     + 0,  0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70
     -----------------------------------------------
a(n) = 1,  2,  7, 11, 25, 35, 65, 85,140,175,266,322
		

Crossrefs

Cf. A001651(k=1), A001318(k=2), A028724(k=3).
Cf. repeated binomial coefficients: A008805(k=2), A058187(k=3), A189976(k=4).

Programs

  • Mathematica
    k := 4; nmax := 32; a := Flatten[Table[{Binomial[n,k], Binomial[n,k]},{n,k,nmax}]];
    a + Flatten[Join[{0}, Drop[a,-1]]] + Flatten[Join[{0,0}, Drop[a,-2]]] (* Georg Fischer, Nov 29 2020 *)

Formula

a(1) = b(1), a(2) = b(2), a(n) = b(n) + b(n-1) + b(n-2) for n > 2, where k = 4 and b(n) = binomial(floor((n+7)/2), k) = A189976(n-7).

Extensions

More terms from and edited by Georg Fischer, Nov 28 2020

A172101 Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

Number of symmetric Dyck paths of semilength n with k peaks.

Examples

			Triangle begins :
  1;
  0,  1;
  0,  1,  1;
  0,  1,  1,  1;
  0,  1,  2,  2,  1;
  0,  1,  2,  4,  2,   1;
  0,  1,  3,  6,  6,   3,   1;
  0,  1,  3,  9,  9,   9,   3,   1;
  0,  1,  4, 12, 18,  18,  12,   4,   1;
  0,  1,  4, 16, 24,  36,  24,  16,   4,  1;
  0,  1,  5, 20, 40,  60,  60,  40,  20,  5,  1;
  0,  1,  5, 25, 50, 100, 100, 100,  50, 25,  5,  1;
  0,  1,  6, 30, 75, 150, 200, 200, 150, 75, 30,  6,  1;
		

Crossrefs

Cf. A001405 (row sums), A005566, A084938, A088518 (diagonal sums), A088855.
Column k: A000007 (k=0), A000012 (k=1), A008619 (k=2), A002620 (k=3), A028724 (k=4), A028723 (k=5), A028725 (k=6), A331574 (k=7).

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
  • Sage
    def A172101(n,k):
        if (n==0): return 1
        else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
    flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022

Formula

Sum_{k=0..n} T(n,k) = A001405(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - [n=1] + A088518(n)*[n >= 1].
From G. C. Greubel, Apr 08 2022: (Start)
T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2))*binomial(floor(n/2), floor(k/2)).
T(2*n, n) = [n=0] + A005566(n-1)*[n >= 1].
T(n-1, n-k) = T(n-1, k), n >= 1, 1 <= k <= n. (End)
Showing 1-9 of 9 results.