A247644
Triangle formed from the odd-numbered rows of A088855.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1, 1, 7, 49, 147, 441, 735, 1225, 1225, 1225, 735, 441, 147, 49, 7, 1, 1, 8, 64, 224, 784, 1568, 3136, 3920, 4900, 3920, 3136, 1568, 784, 224, 64, 8, 1
Offset: 1
Triangle begins:
1,
1,1,1,
1,2,4,2,1,
1,3,9,9,9,3,1,
1,4,16,24,36,24,16,4,1,
1,5,25,50,100,100,100,50,25,5,1,
1,6,36,90,225,300,400,300,225,90,36,6,1,
1,7,49,147,441,735,1225,1225,1225,735,441,147,49,7,1,
1,8,64,224,784,1568,3136,3920,4900,3920,3136,1568,784,224,64,8,1,
...
-
row[n_] := CoefficientList[Sum[Binomial[n, k]^2 *x^(2*k), {k, 0, n}] + Sum[Binomial[n, k]*Binomial[n, k - 1]* x^(2*k - 1), {k, 0, n}], x];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2018 *)
-
T(n, k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ A088855
row(n) = vector(2*n-1, k, T(2*n-1, k)); \\ Michel Marcus, Sep 27 2021
A001405
a(n) = binomial(n, floor(n/2)).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110
Offset: 0
For n = 4, the a(4) = 6 distinct strings of length 4, each of which is a prefix of a string of balanced parentheses, are ((((, (((), (()(, ()((, ()(), and (()). - _Lee A. Newberg_, Apr 26 2010
There are a(5)=10 symmetric balanced strings of 5 pairs of parentheses:
[ 1] ((((()))))
[ 2] (((()())))
[ 3] ((()()()))
[ 4] ((())(()))
[ 5] (()()()())
[ 6] (()(())())
[ 7] (())()(())
[ 8] ()()()()()
[ 9] ()((()))()
[10] ()(()())() - _Joerg Arndt_, Jul 25 2011
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
The a(4)=6 binary 4-tuples such that the number of 1's in the even positions is the same as the number of 1's in the odd positions are 0000, 1100, 1001, 0110, 0011, 1111. - _Juan A. Olmos_, Dec 21 2017
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
- K. Engel, Sperner Theory, Camb. Univ. Press, 1997; Theorem 1.1.1.
- P. Frankl, Extremal sets systems, Chap. 24 of R. L. Graham et al., eds, Handbook of Combinatorics, North-Holland.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), p. 452.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0 to 200 computed by T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math., Series 55, Tenth Printing, 1972.
- M. Aigner, Enumeration via ballot numbers, Discrete Math., Vol. 308 (2008), pp. 2544-2563.
- A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Volume 332 (October 2014), Pages 45-54.
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Taylor Ball, David Galvin, Katie Hyry, and Kyle Weingartner, Independent set and matching permutations, arXiv:1901.06579 [math.CO], 2019.
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Elena Barcucci, Antonio Bernini, and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril and A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq., Vol. 18 (2015), Article 15.7.1.
- Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020. See Table 1.
- Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS, Vol. 12 (2009), Article 09.5.4.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, Vol. 139, No. 1-3 (1995), pp. 463-468.
- Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Henry Bottomley, Illustration of initial terms.
- J. M. Campbell, The expansion of immaculate functions in the ribbon basis, Discrete Math., Vol. 340 (2017), pp. 1716-1726.
- Colin Defant and Kai Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
- Justine Falque, Jean-Christophe Novelli, and Jean-Yves Thibon, Pinnacle sets revisited, arXiv:2106.05248 [math.CO], 2021.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 77.
- J. R. Griggs, On the distribution of sums of residues, arXiv:math/9304211 [math.NT], 1993.
- O. Guibert and T. Mansour, Restricted 132-involutions, Séminaire Lotharingien de Combinatoire, B48a, 23 pp, 2002.
- H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., Vol. 10, No. 8 (1979), pp. 964-999.
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- F. Harary and R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik, Vol. 278 (1975), pp. 322-335. (Annotated scanned copy)
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct 2011.
- Zoe M. Himwich and Noah A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [q-bio.pE] (2019); Adv. Appl. Math. 113 (2020), 101939.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 7, 252-282, 338-393.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math., Vol. 101 (2018), pp. 232-265.
- Jean-Philippe Labbé and Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- P. Leroux and E. Rassart, Enumeration of Symmetry Classes of Parallelogram Polyominoes, arXiv:math/9901135 [math.CO], 1999.
- Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), Article 12.9.1.
- D. Lubell, A short proof of Sperner's lemma, J. Combin. Theory, Vol. 1 (1966), p. 299.
- Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), pp. 227-238.
- Eric Marberg and Brendan Pawlowski, Stanley symmetric functions for signed involutions, arXiv:1806.11208 [math.CO], 2018.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- M. A. Narcowich, Problem 73-6, SIAM Review, Vol. 16, No. 1, 1974, p. 97.
- Ran Pan, Exercise P, Project P.
- Saulo Queiroz, João Vilela, and Edmundo Monteiro, What is the Cost of the Index Selector Task for OFDM with Index Modulation?, 2019 Wireless Days (WD).
- Saulo Queiroz, João P. Vilela, and Edmundo Monteiro, Optimal Mapper for OFDM with Index Modulation: A Spectro-Computational Analysis, arXiv:2002.09382 [eess.SP], 2020. See also IEEE Access (2020) Vol. 8, 68365-68378.
- Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499 [math.CO], 2015.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron, Vol. 32, No. 3 (1976), pp. 355-361. (Annotated scanned copy)
- Arnold Saunders, A Class of Random Recursive Tree Algorithms with Deletion, arXiv:1906.02720 [math.PR], 2019.
- V. Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., Vol. 35, No. 5 (2004), pp. 629-638.
- V. Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], May 05 2011.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Emanuel Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathematische Zeitschrift (in German), Vol. 27, No. 1 (1928), pp. 544-548.
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
- I. Tasoulas, K. Manes, A. Sapounakis, and P. Tsikouras, Chains with Small Intervals in the Lattice of Binary Paths, arXiv:1911.10883 [math.CO], 2019.
- C. G. Wagner, Letter to N. J. A. Sloane, Sep 30 1974.
- Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
- Eric Weisstein's World of Mathematics, Quota System.
- W. H. W. Wong and E. G. Tay, On Cross-intersecting Sperner Families, arXiv:2001.01910 [math.CO], 2020.
- Index entries for sequences of k-nomial coefficients
- Index entries for "core" sequences.
Row sums of Catalan triangle
A053121 and of symmetric Dyck paths
A088855.
Apparently a(n) = lim_{k->infinity}
A094718(k, n).
Cf.
A000712,
A001006,
A001700,
A005773,
A005817,
A007578,
A007579,
A022916,
A022917 (permutation patterns mod k),
A049401,
A051920,
A063886,
A130820,
A132815,
A153585,
A239241,
A265848.
-
List([0..40],n->Binomial(n,Int(n/2))); # Muniru A Asiru, Apr 08 2018
-
a001405 n = a007318_row n !! (n `div` 2) -- Reinhard Zumkeller, Nov 09 2011
-
[Binomial(n, Floor(n/2)): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
-
A001405 := n->binomial(n, floor(n/2)): seq(A001405(n), n=0..33);
-
Table[Binomial[n, Floor[n/2]], {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *)
Table[DifferenceRoot[Function[{a,n},{-4 n a[n]-2 a[1+n]+(2+n) a[2+n] == 0,a[1] == 1,a[2] == 1}]][n], {n, 30}] (* Luciano Ancora, Jul 08 2015 *)
Array[Binomial[#,Floor[#/2]]&,40,0] (* Harvey P. Dale, Mar 05 2018 *)
-
A001405(n):=binomial(n,floor(n/2))$
makelist(A001405(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
-
a(n) = binomial(n, n\2);
-
first(n) = x='x+O('x^n); Vec((-1+2*x+sqrt(1-4*x^2))/(2*x-4*x^2)) \\ Iain Fox, Dec 20 2017 (edited by Iain Fox, May 07 2018)
-
from math import comb
def A001405(n): return comb(n,n//2) # Chai Wah Wu, Jun 07 2022
A209612
Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations and reflections.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 12, 17, 12, 3, 1, 1, 4, 19, 41, 41, 19, 4, 1, 1, 4, 27, 78, 116, 78, 27, 4, 1, 1, 5, 38, 148, 298, 298, 148, 38, 5, 1, 1, 5, 50, 250, 680, 932, 680, 250, 50, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 8, 8, 3, 1;
1, 3, 12, 17, 12, 3, 1;
1, 4, 19, 41, 41, 19, 4, 1;
1, 4, 27, 78,116, 78, 27, 4, 1;
1, 5, 38,148,298,298,148, 38, 5, 1
-
b[n_, k_] := Binomial[n - 1, n - k]*Binomial[n, n - k];
T[n_, k_] := (n*Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]] + DivisorSum[GCD[n, k], EulerPhi[#]* b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#]*b[n/#, (n + 1 - k)/#]&] - k*Binomial[n, k]^2/(n - k + 1))/(2*n);
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
-
b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
T(n,k)=(n*binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2) + sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/(2*n); \\ Andrew Howroyd, Nov 15 2017
A088518
Symmetric secondary structures of RNA molecules with n nucleotides.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 5, 9, 12, 21, 29, 50, 71, 121, 175, 296, 434, 730, 1082, 1812, 2709, 4521, 6807, 11328, 17157, 28485, 43359, 71844, 109830, 181674, 278769, 460443, 708840, 1169283, 1805291, 2974574, 4604363, 7578937, 11758552, 19337489, 30064037
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
- Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
-
b:= proc(n) option remember;
`if`(n=0, 1, b(n-1)+ add(b(k)*b(n-2-k), k=1..n-2))
end:
a:= proc(n) option remember; `if`(n<2, 1,
a(n-1) +a(n-2) +`if`(irem(n, 2, 'r')=0, -b(r-1), 0))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 27 2012
-
CoefficientList[Series[(1 - 3*x^2 + x^4 - Sqrt[1 - 2*x^2 - x^4 - 2*x^6 + x^8])/(2*x^2*(-1 + x + x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
b[n_] := b[n] = If[n==0, 1, b[n-1] + Sum[b[k]*b[n-2-k], {k, 1, n-2}]]; a[n_] := a[n] = If[n<2, 1, a[n-1] + a[n-2] + If[{q, r} = QuotientRemainder[n, 2 ]; r==0, -b[q-1], 0]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
A172101
Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0
Triangle begins :
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 2, 2, 1;
0, 1, 2, 4, 2, 1;
0, 1, 3, 6, 6, 3, 1;
0, 1, 3, 9, 9, 9, 3, 1;
0, 1, 4, 12, 18, 18, 12, 4, 1;
0, 1, 4, 16, 24, 36, 24, 16, 4, 1;
0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1;
0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1;
0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1;
-
[n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
-
T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
-
def A172101(n,k):
if (n==0): return 1
else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022
A191527
Number of turns in all left factors of Dyck paths of length n.
Original entry on oeis.org
0, 0, 1, 3, 9, 20, 50, 105, 245, 504, 1134, 2310, 5082, 10296, 22308, 45045, 96525, 194480, 413270, 831402, 1755182, 3527160, 7407036, 14872858, 31097794, 62403600, 130007500, 260757900, 541574100, 1085822640, 2249204040, 4508102925, 9316746045
Offset: 0
a(4)=9 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 3+2+1+2+1+0=9 turns (here U=(1,1) and D=(1,-1)).
-
g := 2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
a := proc (n) options operator, arrow: sum(k*binomial(floor((1/2)*n-1/2), floor((1/2)*k))*binomial(ceil((1/2)*n-1/2), ceil((1/2)*k)), k = 0 .. n) end proc: seq(a(n), n = 0 .. 32);
-
CoefficientList[Series[2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*Sqrt[1-4*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
-
x='x+O('x^50); concat([0,0], Vec(2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*sqrt(1-4*x^2))))) \\ G. C. Greubel, May 27 2017
A378809
Triangle read by rows: T(n,k) is the number of peak and valleyless Motzkin meanders of length n with k horizontal steps.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 9, 4, 1, 1, 7, 15, 16, 5, 1, 1, 8, 27, 34, 25, 6, 1, 1, 10, 37, 76, 65, 36, 7, 1, 1, 11, 55, 124, 175, 111, 49, 8, 1, 1, 13, 69, 216, 335, 351, 175, 64, 9, 1, 1, 14, 93, 309, 675, 776, 637, 260, 81, 10, 1
Offset: 0
The triangle begins
k=0 1 2 3 4 5 6 7
n=0 1;
n=1 1, 1;
n=2 1, 2, 1;
n=3 1, 4, 3, 1;
n=4 1, 5, 9, 4, 1;
n=5 1, 7, 15, 16, 5, 1;
n=6 1, 8, 27, 34, 25, 6, 1;
n=7 1, 10, 37, 76, 65, 36, 7, 1;
...
T(3,0) = 1: UUU.
T(3,1) = 4: UUH, UHU, UHD, HUU.
T(3,2) = 3: UHH, HHU, HUH.
T(3,3) = 1: HHH.
-
A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); for(n=0,N-1,print(Vecrev(polcoeff(h,n))))}
A_xy(10)
A378810
Number of horizontal steps in all peak and valleyless Motzkin meanders of length n.
Original entry on oeis.org
0, 1, 4, 13, 39, 110, 300, 801, 2106, 5473, 14097, 36056, 91697, 232108, 585212, 1470557, 3684682, 9209417, 22967446, 57167993, 142051519, 352427720, 873157093, 2160579740, 5340150100, 13185150903, 32523933395, 80156852042, 197391001215, 485723767342
Offset: 0
For n = 3 we have meanders, UUU, UUH, UHU, UHD, HUU, UHH, HHU, HUH, HHH; giving a total of a(3) = 13 H steps.
-
A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); h}
P_xy(N) = Pol(A_xy(N), {x})
A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
A_x(20)
Showing 1-8 of 8 results.
Comments