cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A247644 Triangle formed from the odd-numbered rows of A088855.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1, 1, 7, 49, 147, 441, 735, 1225, 1225, 1225, 735, 441, 147, 49, 7, 1, 1, 8, 64, 224, 784, 1568, 3136, 3920, 4900, 3920, 3136, 1568, 784, 224, 64, 8, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2014

Keywords

Comments

The rows give the coefficients in the numerator polynomials of the o.g.f.s for the columns of triangle A055898. - Georg Fischer, Aug 16 2021
They also occur (with a factor 2*x) in the numerator polynomials of the difference A157052-A157074. - Georg Fischer, Sep 27 2021

Examples

			Triangle begins:
1,
1,1,1,
1,2,4,2,1,
1,3,9,9,9,3,1,
1,4,16,24,36,24,16,4,1,
1,5,25,50,100,100,100,50,25,5,1,
1,6,36,90,225,300,400,300,225,90,36,6,1,
1,7,49,147,441,735,1225,1225,1225,735,441,147,49,7,1,
1,8,64,224,784,1568,3136,3920,4900,3920,3136,1568,784,224,64,8,1,
...
		

Crossrefs

Cf. A088459 (even numbered rows of A088855).

Programs

  • Mathematica
    row[n_] := CoefficientList[Sum[Binomial[n, k]^2 *x^(2*k), {k, 0, n}] + Sum[Binomial[n, k]*Binomial[n, k - 1]* x^(2*k - 1), {k, 0, n}], x];
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2018 *)
  • PARI
    T(n, k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ A088855
    row(n) = vector(2*n-1, k, T(2*n-1, k)); \\ Michel Marcus, Sep 27 2021

Extensions

Row n=8 corrected by Jean-François Alcover, Jun 07 2018
Offset changed to 1 by Georg Fischer, Sep 27 2021

A001405 a(n) = binomial(n, floor(n/2)).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110
Offset: 0

Views

Author

Keywords

Comments

Sperner's theorem says that this is the maximal number of subsets of an n-set such that no one contains another.
When computed from index -1, [seq(binomial(n,floor(n/2)), n = -1..30)]; -> [1,1,1,2,3,6,10,20,35,70,126,...] and convolved with aerated Catalan numbers [seq(((n+1) mod 2)*binomial(n,n/2)/((n/2)+1), n = 0..30)]; -> [1,0,1,0,2,0,5,0,14,0,42,0,132,0,...] shifts left by one: [1,1,2,3,6,10,20,35,70,126,252,...] and if again convolved with aerated Catalan numbers, gives A037952 apart from the initial term. - Antti Karttunen, Jun 05 2001 [This is correct because the g.f.'s satisfy (1+x*g001405(x))*g126120(x) = g001405(x) and g001405(x)*g126120(x) = g037952(x)/x. - R. J. Mathar, Sep 23 2021]
Number of ordered trees with n+1 edges, having nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Gives for n >= 1 the maximum absolute column sum norm of the inverse of the Vandermonde matrix (a_ij) i=0..n-1, j=0..n-1 with a_00=1 and a_ij=i^j for (i,j) != (0,0). - Torsten Muetze, Feb 06 2004
Image of Catalan numbers A000108 under the Riordan array (1/(1-2x),-x/(1-2x)) or A065109. - Paul Barry, Jan 27 2005
Number of left factors of Dyck paths, consisting of n steps. Example: a(4)=6 because we have UDUD, UDUU, UUDD, UUDU, UUUD and UUUU, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Apr 23 2005
Number of dispersed Dyck paths of length n; they are defined as concatenations of Dyck paths and (1,0)-steps on the x-axis; equivalently, Motzkin paths with no (1,0)-steps at positive height. Example: a(4)=6 because we have HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD, where U=(1,1), H=(1,0), and D=(1,-1). - Emeric Deutsch, Jun 04 2011
a(n) is odd iff n=2^k-1. - Jon Perry, May 05 2005
An inverse Chebyshev transform of binomial(1,n)=(1,1,0,0,0,...) where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), with c(x) the g.f. of A000108. - Paul Barry, May 13 2005
In a random walk on the number line, starting at 0 and with 0 absorbing after the first step, number of ways of ending up at a positive integer after n steps. - Joshua Zucker, Jul 31 2005
Maximum number of sums of the form Sum_{i=1..n} e(i)*a(i) that are congruent to 0 mod q, where e_i=0 or 1 and gcd(a_i,q)=1, provided that q > ceiling(n/2). - Ralf Stephan, Apr 27 2003
Also the number of standard tableaux of height <= 2. - Mike Zabrocki, Mar 24 2007
Hankel transform of this sequence forms A000012 = [1,1,1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
A001263 * [1, -2, 3, -4, 5, ...] = [1, -1, -2, 3, 6, -10, -20, 35, 70, -126, ...]. - Gary W. Adamson, Jan 02 2008
Equals right border of triangle A153585. - Gary W. Adamson, Dec 28 2008
Second binomial transform of A168491. - Philippe Deléham, Nov 27 2009
a(n) is also the number of distinct strings of length n, each of which is a prefix of a string of balanced parentheses; see example. - Lee A. Newberg, Apr 26 2010
Number of symmetric balanced strings of n pairs of parentheses; see example. - Joerg Arndt, Jul 25 2011
a(n) is the number of permutation patterns modulo 2. - Olivier Gérard, Feb 25 2011
For n >= 2, a(n-1) is the number of incongruent two-color bracelets of 2*n-1 beads, n of which are black (A007123), having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
The number of permutations of n elements where p(k-2) < p(k) for all k. - Joerg Arndt, Jul 23 2011
Also size of the equivalence class of S_{n+1} containing the identity permutation under transformations of positionally adjacent elements of the form abc <--> cba where a < b < c, cf. A210668. - Tom Roby, May 15 2012
a(n) is the number of symmetric Dyck paths of length 2n. - Matt Watson, Sep 26 2012
a(n) is divisible by A000108(floor(n/2)) = abs(A129996(n-2)). - Paul Curtz, Oct 23 2012
a(n) is the number of permutations of length n avoiding both 213 and 231 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Number of symmetric standard Young tableaux of shape (n,n). - Ran Pan, Apr 10 2015
From Luciano Ancora, May 09 2015: (Start)
Also "stepped path" in the array formed by partial sums of the all 1's sequence (or a Pascal's triangle displayed as a square). Example:
[1], [1], 1, 1, 1, 1, 1, ... A000012
1, [2], [3], 4, 5, 6, 7, ...
1, 3, [6], [10], 15, 21, 28, ...
1, 4, 10, [20], [35], 56, 84, ...
1, 5, 15, 35, [70], [126], 210, ...
Sequences in second formula are the mixed diagonals shown in this array. (End)
a(n) = A265848(n,n). - Reinhard Zumkeller, Dec 24 2015
The constant Sum_{n >= 0} a(n)/n! is 1 + A130820. - Peter Bala, Jul 02 2016
Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-1,1}. - David Nguyen, Dec 20 2016
a(n) is also the number of paths of n steps (either up or down by 1) that end at the maximal value achieved along the path. - Winston Luo, Jun 01 2017
Number of binary n-tuples such that the number of 1's in the even positions is the same as the number of 1's in the odd positions. - Juan A. Olmos, Dec 21 2017
Equivalently, a(n) is the number of subsets of {1,...,n} containing as many even numbers as odd numbers. - Gus Wiseman, Mar 17 2018
a(n) is the number of Dyck paths with semilength = n+1, returns to the x-axis = floor((n+3)/2) and up movements in odd positions = floor((n+3)/2). Example: a(4)=6, U=up movement in odd position, u=up movement in even position, d=down movement, -=return to x-axis: Uududd-Ud-Ud-, Ud-Uudd-Uudd-, Uudd-Uudd-Ud-, Ud-Ud-Uududd-, Uudd-Ud-Uudd-, Ud-Uududd-Ud-. - Roger Ford, Dec 29 2017
Let C_n(R, H) denote the transition matrix from the ribbon basis to the homogeneous basis of the graded component of the algebra of noncommutative symmetric functions of order n. Letting I(2^(n-1)) denote the identity matrix of order 2^(n-1), it has been conjectured that the dimension of the kernel of C_n(R, H) - I(2^(n-1)) is always equal to a(n-1). - John M. Campbell, Mar 30 2018
The number of U-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are U-equivalent iff the positions of pattern U are identical in these paths. - Sergey Kirgizov, Apr 08 2018
All binary self-dual codes of length 2n, for n > 0, must contain at least a(n) codewords of weight n. More to the point, there will always be at least one, perhaps unique, binary self-dual code of length 2n that will contain exactly a(n) codewords that have a hamming weight equal to half the length of the code (n). This code can be constructed by direct summing the unique binary self-dual code of length 2 (up to permutation equivalence) to itself n times. A permutation equivalent code can be constructed by augmenting two identity matrices of length n together. - Nathan J. Russell, Nov 25 2018
Closed under addition. - Torlach Rush, Apr 18 2019
The sequence starting (1, 2, 3, 6, ...) is the invert transform of A097331: (1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...). - Gary W. Adamson, Feb 22 2020
From Gary W. Adamson, Feb 24 2020: (Start)
The sequence is the culminating limit of an infinite set of sequences with convergents of 2*cos(Pi/N), N = (3, 5, 7, 9, ...).
The first few such sequences are:
N = 3: (1, 1, 1, 1, 1, 1, 1, 1, ...)
N = 5: (1, 1, 2, 3, 5, 8, 13, 21, ...) = A000045
N = 7: (1, 1, 2, 3, 6, 10, 19, 33, ...) = A028495, a(n)/a(n-1) tends to 1.801937...
N = 9 (1, 1, 2, 3, 6, 10, 20, 35, ...) = A061551, a(n)/a(n_1) tends to 1.879385...
...
In the limit one gets the current sequence with ratio 2. (End)
a(n) is also the number of monotone lattice paths from (0,0) to (floor(n/2),ceiling(n/2)). These are the number of Grand Dyck paths when n is even. - Nachum Dershowitz, Aug 12 2020
The maximum number of preimages that a permutation of length n+1 can have under the consecutive-132-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
Counts faro permutations of length n. Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one. - Sergey Kirgizov, Jan 12 2021
Per "Sperner's Theorem", the largest possible familes of finite sets none of which contain any other sets in the family. - Renzo Benedetti, May 26 2021
a(n-1) are the incomplete, primitive Dyck paths of n steps without a first return: paths of U and D steps starting at the origin, never touching the horizontal axis later on, and ending above the horizontal axis. n=1: {U}, n=2: {UU}, n=3: {UUU, UUD}, n=4: {UUUU, UUUD, UUDU}, n=5: {UUUUU, UUUUD, UUUDD, UUDUU, UUUDU, UUDUD}. For comparison: A037952 counts incomplete Dyck paths with n steps with any number of intermediate returns to the horizontal axis, ending above the horizontal axis. - R. J. Mathar, Sep 24 2021
a(n) is the number of noncrossing partitions of [n] whose nontrivial blocks are of type {a,b}, with a <= n/2, b > n/2. - Francesca Aicardi, May 29 2022
Maximal coefficient of (1+x)^n. - Vaclav Kotesovec, Dec 30 2022
Sums of lower-left-to-upper-right diagonals of the Catalan Triangle A001263. - Howard A. Landman, Sep 16 2024

Examples

			For n = 4, the a(4) = 6 distinct strings of length 4, each of which is a prefix of a string of balanced parentheses, are ((((, (((), (()(, ()((, ()(), and (()). - _Lee A. Newberg_, Apr 26 2010
There are a(5)=10 symmetric balanced strings of 5 pairs of parentheses:
[ 1] ((((()))))
[ 2] (((()())))
[ 3] ((()()()))
[ 4] ((())(()))
[ 5] (()()()())
[ 6] (()(())())
[ 7] (())()(())
[ 8] ()()()()()
[ 9] ()((()))()
[10] ()(()())() - _Joerg Arndt_, Jul 25 2011
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
The a(4)=6 binary 4-tuples such that the number of 1's in the even positions is the same as the number of 1's in the odd positions are 0000, 1100, 1001, 0110, 0011, 1111. - _Juan A. Olmos_, Dec 21 2017
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
  • K. Engel, Sperner Theory, Camb. Univ. Press, 1997; Theorem 1.1.1.
  • P. Frankl, Extremal sets systems, Chap. 24 of R. L. Graham et al., eds, Handbook of Combinatorics, North-Holland.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), p. 452.

Crossrefs

Row sums of Catalan triangle A053121 and of symmetric Dyck paths A088855.
Enumerates the structures encoded by A061854 and A061855.
First differences are in A037952.
Apparently a(n) = lim_{k->infinity} A094718(k, n).
Partial sums are in A036256. Column k=2 of A182172. Column k=1 of A335570.
Bisections: A000984 (even part), A001700 (odd part).
Cf. A097331.
Cf. A107373, A340567, A340568, A340569 (popularity of certain patterns in faro permutations).

Programs

  • GAP
    List([0..40],n->Binomial(n,Int(n/2))); # Muniru A Asiru, Apr 08 2018
    
  • Haskell
    a001405 n = a007318_row n !! (n `div` 2) -- Reinhard Zumkeller, Nov 09 2011
    
  • Magma
    [Binomial(n, Floor(n/2)): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    A001405 := n->binomial(n, floor(n/2)): seq(A001405(n), n=0..33);
  • Mathematica
    Table[Binomial[n, Floor[n/2]], {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *)
    Table[DifferenceRoot[Function[{a,n},{-4 n a[n]-2 a[1+n]+(2+n) a[2+n] == 0,a[1] == 1,a[2] == 1}]][n], {n, 30}] (* Luciano Ancora, Jul 08 2015 *)
    Array[Binomial[#,Floor[#/2]]&,40,0] (* Harvey P. Dale, Mar 05 2018 *)
  • Maxima
    A001405(n):=binomial(n,floor(n/2))$
    makelist(A001405(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
    
  • PARI
    a(n) = binomial(n, n\2);
    
  • PARI
    first(n) = x='x+O('x^n); Vec((-1+2*x+sqrt(1-4*x^2))/(2*x-4*x^2)) \\ Iain Fox, Dec 20 2017 (edited by Iain Fox, May 07 2018)
    
  • Python
    from math import comb
    def A001405(n): return comb(n,n//2) # Chai Wah Wu, Jun 07 2022

Formula

a(n) = max_{k=0..n} binomial(n, k).
a(2*n) = A000984(n), a(2*n+1) = A001700(n).
By symmetry, a(n) = binomial(n, ceiling(n/2)). - Labos Elemer, Mar 20 2003
P-recursive with recurrence: a(0) = 1, a(1) = 1, and for n >= 2, (n+1)*a(n) = 2*a(n-1) + 4*(n-1)*a(n-2). - Peter Bala, Feb 28 2011
G.f.: (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1 - x - x^2*c(x^2)); where c(x) = g.f. for Catalan numbers A000108.
G.f.: (-1 + 2*x + sqrt(1-4*x^2))/(2*x - 4*x^2). - Lee A. Newberg, Apr 26 2010
G.f.: 1/(1 - x - x^2/(1 - x^2/(1 - x^2/(1 - x^2/(1 - ... (continued fraction). - Paul Barry, Aug 12 2009
a(0) = 1; a(2*m+2) = 2*a(2*m+1); a(2*m+1) = Sum_{k = 0..2*m} (-1)^k*a(k)*a(2*m-k). - Len Smiley, Dec 09 2001
G.f.: (sqrt((1+2*x)/(1-2*x)) - 1)/(2*x). - Vladeta Jovovic, Apr 28 2003
The o.g.f. A(x) satisfies A(x) + x*A^2(x) = 1/(1-2*x). - Peter Bala, Feb 28 2011
E.g.f.: BesselI(0, 2*x) + BesselI(1, 2*x). - Vladeta Jovovic, Apr 28 2003
a(0) = 1; a(2*m+2) = 2*a(2*m+1); a(2*m+1) = 2*a(2*m) - c(m), where c(m)=A000108(m) are the Catalan numbers. - Christopher Hanusa (chanusa(AT)washington.edu), Nov 25 2003
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*A000108(k). - Paul Barry, Jan 27 2005
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(1, n-2*k). - Paul Barry, May 13 2005
From Paul Barry, Nov 02 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} (binomial(n+1, k)*(cos((n-2*k+1)*Pi/2) + sin((n-2*k+1)*Pi/2))).
a(n) = Sum_{k=0..n+1}, (binomial(n+1, (n-k+1)/2)*(1-(-1)^(n-k))*(cos(k*Pi/2) + sin(k*Pi))/2). (End)
a(n) = Sum_{k=floor(n/2)..n} (binomial(n,n-k) - binomial(n,n-k-1)). - Paul Barry, Sep 06 2007
Inverse binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double inverse binomial transform of A001700. Row sums of triangle A132815. - Gary W. Adamson, Aug 31 2007
a(n) = Sum_{k=0..n} A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n) = Sum_{k = 0..floor(n/2)} (binomial(n,k) - binomial(n,k-1)). - Nishant Doshi (doshinikki2004(AT)gmail.com), Apr 06 2009
Sum_{n>=0} a(n)/10^(n+1) = 0.1123724... = (sqrt(3)-sqrt(2))/(2*sqrt(2)); Sum_{n>=0} a(n)/100^(n+1) = 0.0101020306102035... = (sqrt(51)-sqrt(49))/(2*sqrt(49)). - Mark Dols, Jul 15 2010
Conjectured: a(n) = 2^n*2F1(1/2,-n;2;2), useful for number of paths in 1-d for which the coordinate is never negative. - Benjamin Phillabaum, Feb 20 2011
a(2*m+1) = (2*m+1)*a(2*m)/(m+1), e.g., a(7) = (7/4)*a(6) = (7/4)*20 = 35. - Jon Perry, Jan 20 2011
From Peter Bala, Feb 28 2011: (Start)
Let F(x) be the logarithmic derivative of the o.g.f. A(x). Then 1+x*F(x) is the o.g.f. for A027306.
Let G(x) be the logarithmic derivative of 1+x*A(x). Then x*G(x) is the o.g.f. for A058622. (End)
Let M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [1,0,0,0,...] in the main diagonal; and V = the vector [1,0,0,0,...]. a(n) = M^n*V, leftmost term. - Gary W. Adamson, Jun 13 2011
Let M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [1,0,0,0,...] in the main diagonal. a(n) = M^n_{1,1}. - Corrected by Gary W. Adamson, Jan 30 2012
a(n) = A007318(n, floor(n/2)). - Reinhard Zumkeller, Nov 09 2011
a(n+1) = Sum_{k=0..n} a(n-k)*A097331(k) = a(n) + Sum_{k=0..(n-1)/2} A000108(k)*a(n-2*k-1). - Philippe Deléham, Nov 27 2011
a(n) = A214282(n) - A214283(n), for n > 0. - Reinhard Zumkeller, Jul 14 2012
a(n) = Sum_{k=0..n} A168511(n,k)*(-1)^(n-k). - Philippe Deléham, Mar 19 2013
a(n+2*p-2) = Sum_{k=0..floor(n/2)} A009766(n-k+p-1, k+p-1) + binomial(n+2*p-2, p-2), for p >= 1. - Johannes W. Meijer, Aug 02 2013
O.g.f.: (1-x*c(x^2))/(1-2*x), with the o.g.f. c(x) of Catalan numbers A000108. See the rewritten formula given by Lee A. Newberg above. This is the o.g.f. for the row sums the Riordan triangle A053121. - Wolfdieter Lang, Sep 22 2013
a(n) ~ 2^n / sqrt(Pi * n/2). - Charles R Greathouse IV, Oct 23 2015
a(n) = 2^n*hypergeom([1/2,-n], [2], 2). - Vladimir Reshetnikov, Nov 02 2015
a(2*k) = Sum_{i=0..k} binomial(k, i)*binomial(k, i), a(2*k+1) = Sum_{i=0..k} binomial(k+1, i)*binomial(k, i). - Juan A. Olmos, Dec 21 2017
a(0) = 1, a(n) = 2 * a(n-1) for even n, a(n) = (2*n/(n+1)) * a(n-1) for odd n. - James East, Sep 25 2019
a(n) = A037952(n) + A000108(n/2) where A(.)=0 for non-integer argument. - R. J. Mathar, Sep 23 2021
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*Pi/(3*sqrt(3)) + 2.
Sum_{n>=0} (-1)^n/a(n) = 2/3 - 2*Pi/(9*sqrt(3)). (End)
For k>2, Sum_{n>=0} a(n)/k^n = (sqrt((k+2)/(k-2)) - 1)*k/2. - Vaclav Kotesovec, May 13 2022
From Peter Bala, Mar 24 2023: (Start)
a(n) = Sum_{k = 0..n+1} (-1)^(k+binomial(n+2,2)) * k/(n+1) * binomial(n+1,k)^2.
(n + 1)*(2*n - 1)*a(n) = (-1)^(n+1)*2*a(n-1) + 4*(n - 1)*(2*n + 1)*a(n-2) with a(0) = a(1) = 1. (End)
a(n) = Integral_{x=-2..2} x^n*W(x)*dx, n>=0, where W(x) = sqrt((2+x)/(2-x))/(2*Pi) is a positive function on x=(-2,2) and is singular at x = 2. Therefore a(n) is a positive definite sequence. - Karol A. Penson, May 12 2025

A209612 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 12, 17, 12, 3, 1, 1, 4, 19, 41, 41, 19, 4, 1, 1, 4, 27, 78, 116, 78, 27, 4, 1, 1, 5, 38, 148, 298, 298, 148, 38, 5, 1, 1, 5, 50, 250, 680, 932, 680, 250, 50, 5, 1
Offset: 1

Views

Author

Tilman Piesk, Mar 10 2012

Keywords

Comments

Like the Narayana triangle A001263 (and unlike A152176) this triangle is symmetric.

Examples

			Triangle begins:
1;
1,  1;
1,  1,  1;
1,  2,  2,  1;
1,  2,  4,  2,  1;
1,  3,  8,  8,  3,  1;
1,  3, 12, 17, 12,  3,  1;
1,  4, 19, 41, 41, 19,  4,  1;
1,  4, 27, 78,116, 78, 27,  4,  1;
1,  5, 38,148,298,298,148, 38,  5,  1
		

Crossrefs

Cf. A111275 (row sums)

Programs

  • Mathematica
    b[n_, k_] := Binomial[n - 1, n - k]*Binomial[n, n - k];
    T[n_, k_] := (n*Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]] + DivisorSum[GCD[n, k], EulerPhi[#]* b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#]*b[n/#, (n + 1 - k)/#]&] - k*Binomial[n, k]^2/(n - k + 1))/(2*n);
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
  • PARI
    b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
    T(n,k)=(n*binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2) + sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/(2*n); \\ Andrew Howroyd, Nov 15 2017

Formula

T(n,k) = (A088855(n,k) + A209805(n,k))/2. - Andrew Howroyd, Nov 15 2017

A088518 Symmetric secondary structures of RNA molecules with n nucleotides.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 9, 12, 21, 29, 50, 71, 121, 175, 296, 434, 730, 1082, 1812, 2709, 4521, 6807, 11328, 17157, 28485, 43359, 71844, 109830, 181674, 278769, 460443, 708840, 1169283, 1805291, 2974574, 4604363, 7578937, 11758552, 19337489, 30064037
Offset: 0

Views

Author

Emeric Deutsch, Nov 18 2003

Keywords

Comments

Diagonal sums of triangle in A088855. - Philippe Deléham, Jan 04 2009
Number of prime symmetric Dyck (n+2)-paths with no ascent of length 1. E.g., the a(3) = 2 5-paths are UUUUUDDDDD and UUUDDUUDDD. - David Scambler, Aug 27 2012
a(n) is the number of 3412-avoiding involutions on [n] with no transpositions of the form (i,i+1) that are invariant under the reverse complement map. For example, a(5)=4 counts the involutions 12345, 14325, 52341, 54321. - Juan B. Gil, May 23 2020

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(n=0, 1, b(n-1)+ add(b(k)*b(n-2-k), k=1..n-2))
        end:
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1) +a(n-2) +`if`(irem(n, 2, 'r')=0, -b(r-1), 0))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 27 2012
  • Mathematica
    CoefficientList[Series[(1 - 3*x^2 + x^4 - Sqrt[1 - 2*x^2 - x^4 - 2*x^6 + x^8])/(2*x^2*(-1 + x + x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
    b[n_] := b[n] = If[n==0, 1, b[n-1] + Sum[b[k]*b[n-2-k], {k, 1, n-2}]]; a[n_] := a[n] = If[n<2, 1, a[n-1] + a[n-2] + If[{q, r} = QuotientRemainder[n, 2 ]; r==0, -b[q-1], 0]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: H(z) satisfies z^2*(1-z-z^2)*H^2 + (1-z-z^2)*(1+z-z^2)*H - (1+z-z^2) = 0. H = (1/(1-z-z^2))*C(-z^2/(1-3z^2+z^4)), where C(z) = (1-sqrt(1-4z))/(2z) is the Catalan function. a(0)=a(1)=1; a(2n) = a(2n-1) + a(2n-2) - A004148(n-1) for n > 0; a(2n+1) = a(2n) + a(2n-1) for n > 0.
a(n) = F(n) - Sum_{i=1..floor(n/2)-1} A004148(i)*F(n-1-2i), where F(i)=A000045(i) are the Fibonacci numbers. - Emeric Deutsch, Nov 19 2003
a(n) is asymptotic to c*phi^n/sqrt(n) where phi=(1+sqrt(5))/2 and c=0.86.... - Benoit Cloitre, Nov 19 2003
In closed form, c = sqrt(1+3/sqrt(5)) / sqrt(Pi) = 0.863346635039540133... - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence (n+2)*a(n) -a(n-1) +(-2*n-1)*a(n-2) -2*a(n-3) +(-n+3)*a(n-4) -2a(n-5) +(-2*n+13)*a(n-6) -a(n-7) +(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022

A172101 Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

Number of symmetric Dyck paths of semilength n with k peaks.

Examples

			Triangle begins :
  1;
  0,  1;
  0,  1,  1;
  0,  1,  1,  1;
  0,  1,  2,  2,  1;
  0,  1,  2,  4,  2,   1;
  0,  1,  3,  6,  6,   3,   1;
  0,  1,  3,  9,  9,   9,   3,   1;
  0,  1,  4, 12, 18,  18,  12,   4,   1;
  0,  1,  4, 16, 24,  36,  24,  16,   4,  1;
  0,  1,  5, 20, 40,  60,  60,  40,  20,  5,  1;
  0,  1,  5, 25, 50, 100, 100, 100,  50, 25,  5,  1;
  0,  1,  6, 30, 75, 150, 200, 200, 150, 75, 30,  6,  1;
		

Crossrefs

Cf. A001405 (row sums), A005566, A084938, A088518 (diagonal sums), A088855.
Column k: A000007 (k=0), A000012 (k=1), A008619 (k=2), A002620 (k=3), A028724 (k=4), A028723 (k=5), A028725 (k=6), A331574 (k=7).

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
  • Sage
    def A172101(n,k):
        if (n==0): return 1
        else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
    flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022

Formula

Sum_{k=0..n} T(n,k) = A001405(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - [n=1] + A088518(n)*[n >= 1].
From G. C. Greubel, Apr 08 2022: (Start)
T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2))*binomial(floor(n/2), floor(k/2)).
T(2*n, n) = [n=0] + A005566(n-1)*[n >= 1].
T(n-1, n-k) = T(n-1, k), n >= 1, 1 <= k <= n. (End)

A191527 Number of turns in all left factors of Dyck paths of length n.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 50, 105, 245, 504, 1134, 2310, 5082, 10296, 22308, 45045, 96525, 194480, 413270, 831402, 1755182, 3527160, 7407036, 14872858, 31097794, 62403600, 130007500, 260757900, 541574100, 1085822640, 2249204040, 4508102925, 9316746045
Offset: 0

Views

Author

Emeric Deutsch, Jun 06 2011

Keywords

Examples

			a(4)=9 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 3+2+1+2+1+0=9 turns (here U=(1,1) and D=(1,-1)).
		

Crossrefs

Cf. A088855.

Programs

  • Maple
    g := 2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
    a := proc (n) options operator, arrow: sum(k*binomial(floor((1/2)*n-1/2), floor((1/2)*k))*binomial(ceil((1/2)*n-1/2), ceil((1/2)*k)), k = 0 .. n) end proc: seq(a(n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*Sqrt[1-4*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*sqrt(1-4*x^2))))) \\ G. C. Greubel, May 27 2017

Formula

a(n) = Sum_{k=0..n} k*binomial(floor((n-1)/2), floor(k/2))*binomial(ceiling((n-1)/2), ceiling(k/2)).
G.f.: g(z)=2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))).
a(n) ~ 2^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence (n+1)*a(n) + (-n-1)*a(n-1) + 2*(-4*n+5)*a(n-2) + 4*(n+1)*a(n-3) + 16*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 06 2014

A378809 Triangle read by rows: T(n,k) is the number of peak and valleyless Motzkin meanders of length n with k horizontal steps.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 9, 4, 1, 1, 7, 15, 16, 5, 1, 1, 8, 27, 34, 25, 6, 1, 1, 10, 37, 76, 65, 36, 7, 1, 1, 11, 55, 124, 175, 111, 49, 8, 1, 1, 13, 69, 216, 335, 351, 175, 64, 9, 1, 1, 14, 93, 309, 675, 776, 637, 260, 81, 10, 1
Offset: 0

Views

Author

John Tyler Rascoe, Dec 08 2024

Keywords

Comments

Motzkin meanders are lattice paths starting at (0,0) with steps Up (0,1), Horizontal (1,0), and Down (0,-1) that stay weakly above the x-axis. Peak and valleyless Motzkin meanders avoid UD and DU.

Examples

			The triangle begins
   k=0   1   2   3   4   5   6   7
 n=0 1;
 n=1 1,  1;
 n=2 1,  2,  1;
 n=3 1,  4,  3,  1;
 n=4 1,  5,  9,  4,  1;
 n=5 1,  7, 15, 16,  5,  1;
 n=6 1,  8, 27, 34, 25,  6,  1;
 n=7 1, 10, 37, 76, 65, 36,  7,  1;
 ...
T(3,0) = 1: UUU.
T(3,1) = 4: UUH, UHU, UHD, HUU.
T(3,2) = 3: UHH, HHU, HUH.
T(3,3) = 1: HHH.
		

Crossrefs

Cf. column k=1 A001651, A005773, A088855, column k=2 A247643, row sums A308435, A378810.

Programs

  • PARI
    A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
    A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); for(n=0,N-1,print(Vecrev(polcoeff(h,n))))}
    A_xy(10)

Formula

G.f.: Sum_{n>=0} 1/(1-y*x)^(n+1) * ([n=0] + Sum_{k=1..n} A088855(n,k)*x^(n+k-1)*y^(k-1)).

A378810 Number of horizontal steps in all peak and valleyless Motzkin meanders of length n.

Original entry on oeis.org

0, 1, 4, 13, 39, 110, 300, 801, 2106, 5473, 14097, 36056, 91697, 232108, 585212, 1470557, 3684682, 9209417, 22967446, 57167993, 142051519, 352427720, 873157093, 2160579740, 5340150100, 13185150903, 32523933395, 80156852042, 197391001215, 485723767342
Offset: 0

Views

Author

John Tyler Rascoe, Dec 08 2024

Keywords

Comments

Motzkin meanders are lattice paths starting at (0,0) with steps Up (0,1), Horizontal (1,0), and Down (0,-1) that stay weakly above the x-axis. Peak and valleyless Motzkin meanders avoid UD and DU.

Examples

			For n = 3 we have meanders, UUU, UUH, UHU, UHD, HUU, UHH, HHU, HUH, HHH; giving a total of a(3) = 13 H steps.
		

Crossrefs

Programs

  • PARI
    A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
    A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); h}
    P_xy(N) = Pol(A_xy(N), {x})
    A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
    A_x(20)

Formula

a(n) = Sum_{k=1..n} A378809(n,k)*k.
Showing 1-8 of 8 results.