cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 434 results. Next

A057977 GCD of consecutive central binomial coefficients: a(n) = gcd(A001405(n+1), A001405(n)).

Original entry on oeis.org

1, 1, 1, 3, 2, 10, 5, 35, 14, 126, 42, 462, 132, 1716, 429, 6435, 1430, 24310, 4862, 92378, 16796, 352716, 58786, 1352078, 208012, 5200300, 742900, 20058300, 2674440, 77558760, 9694845, 300540195, 35357670, 1166803110, 129644790, 4537567650
Offset: 0

Views

Author

Labos Elemer, Nov 13 2000

Keywords

Comments

The numbers can be seen as a generalization of the Catalan numbers, extending A000984(n)/(n+1) to A056040(n)/(floor(n/2)+1). They can also be seen as composing the aerated Catalan numbers A126120 with the aerated complementary Catalan numbers A138364. (Thus the name 'extended Catalan numbers' might be apt for this sequence.) - Peter Luschny, May 03 2011
a(n) is the number of lattice paths from (0,0) to (n,0) that do not go below the x-axis and consist of steps U=(1,1), D=(1,-1) and maximally one step H=(1,0). - Alois P. Heinz, Apr 17 2013
Equal to A063549 (see comments in that sequence). - Nathaniel Johnston, Nov 17 2014
a(n) can be computed with ballot numbers without multiplications or divisions, see Maple program. - Peter Luschny, Feb 23 2019

Examples

			This GCD equals A001405(n) for the smaller odd number gcd(C(12,6), C(11,5)) = gcd(924,462) = 462 = C(11,5).
		

Crossrefs

Bisections are A000108 and A001700.

Programs

  • Maple
    A057977_ogf := proc(z) b := z -> (z-1)/(2*z^2);
    (2 + b(z))/sqrt(1-4*z^2) - b(z) end:
    seq(coeff(series(A057977_ogf(z),z,n+3),z,n), n = 0..35);
    A057977_rec := n -> `if`(n=0, 1, A057977_rec(n-1)*n^modp(n,2)
    *(4/(n+2))^modp(n+1,2));
    A057977_int := proc(n) int((x^(2*n-1)*((4-x)^2/x)^cos(Pi*n))^(1/4),x=0..4)/(2*Pi); round(evalf(%)) end:
    A057977 := n -> (n!/iquo(n,2)!^2) / (iquo(n,2)+1):
    seq(A057977(n), n=0..35); # Peter Luschny, Apr 30 2011
    b := proc(p, q) option remember; local S;
       if p = 0 and q = 0 then return 1 fi;
       if p < 0 or  p > q then return 0 fi;
       S := b(p-2, q) + b(p, q-2);
       if type(q, odd) then S := S + b(p-1, q-1) fi;
       S end:
    seq(b(n, n), n=0..35); # Peter Luschny, Feb 23 2019
  • Mathematica
    a[n_] := n! / (Quotient[n, 2]!^2 * (Quotient[n, 2]+1)); Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 03 2012, after Peter Luschny *)
  • PARI
    a(n)=if(n<0,0,(n+n%2)!/(n\2+1)!/(n\2+n%2)!/(1+n%2))
    a(n)=n!/(n\2)!^2/(n\2+1) \\ Charles R Greathouse IV, May 02 2011
    
  • Sage
    def A057977():
        x, n = 1, 1
        while True:
            yield x
            m = n if is_odd(n) else 4/(n+2)
            x *= m
            n += 1
    a = A057977(); [next(a) for i in range(36)]   # Peter Luschny, Oct 21 2013

Formula

G.f.: (4*x^2+x-1+(1-x)*sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*x^2). E.g.f.: (1+1/x)*BesselI(1, 2*x). - Vladeta Jovovic, Jan 19 2004
From Peter Luschny, Apr 30 2011: (Start)
Recurrence: a(0) = 1 and a(n) = a(n-1)*n^[n odd]*(4/(n+2))^[n even] for n > 0.
Asymptotic formula: Let [n even] = 1 if n is even, 0 otherwise. Let N := n+1+[n even]. Then a(n) ~ 2^N /((n+1)^[n even]*sqrt(Pi*(2*N+1))).
Integral representation: a(n) = (1/(2*Pi))*Int_{x=0..4}(x^(2*n-1)* ((4-x)^2/x)^cos(Pi*n))^(1/4) (End)
E.g.f.: U(0) where U(k)= 1 + x/(1 - x/(x + (k+1)*(k+2)//U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
From R. J. Mathar, Sep 16 2016: (Start)
D-finite with recurrence: (n+2)*a(n) - n*a(n-1) + 4*(-2*n+1)*a(n-2) + 4*(n-1)*a(n-3) + 16*(n-3)*a(n-4) = 0.
D-finite with recurrence: -(n+2)*(n^2-5)*a(n) + 4*(-2*n-1)*a(n-1) + 4*(n-1)*(n^2+2*n-4)*a(n-2) = 0. (End)
Sum_{n>=0} 1/a(n) = 8/3 + 8*Pi/(9*sqrt(3)). - Amiram Eldar, Aug 20 2022

A054336 A convolution triangle of numbers based on A001405 (central binomial coefficients).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 6, 10, 9, 4, 1, 10, 22, 22, 14, 5, 1, 20, 44, 54, 40, 20, 6, 1, 35, 93, 123, 109, 65, 27, 7, 1, 70, 186, 281, 276, 195, 98, 35, 8, 1, 126, 386, 618, 682, 541, 321, 140, 44, 9, 1, 252, 772, 1362, 1624, 1440, 966, 497, 192, 54, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

T(n,k) is the number of 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) with no level steps at positive height and having k blue level steps. Example: T(4,2)=9 because, denoting U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0), we have BBRR, BRBR, BRRB, RBBR, RBRB, RRBB, BBUD, BUDB, and UDBB. - Emeric Deutsch, Jun 07 2011
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(1-(1+x)*z-z^2*c(z^2)), with c(x) the g.f. for Catalan numbers A000108.
Column sequences: A001405, A045621.
Riordan array (f(x), x*f(x)), f(x) the g.f. of A001405. - Philippe Deléham, Dec 08 2009
From Paul Barry, Oct 21 2010: (Start)
Riordan array ((sqrt(1+2x) - sqrt(1-2x))/(2x*sqrt(1-2x)), (sqrt(1+2x)-sqrt(1-2x))/(2*sqrt(1-2x))),
inverse of Riordan array ((1+x)/(1+2x+2x^2), x(1+x)/(1+2x+2x^2)) (A181472). (End)

Examples

			Fourth row polynomial (n=3): p(3,x)= 3 + 5*x + 3*x^2 + x^3.
From _Paul Barry_, Oct 21 2010: (Start)
Triangle begins
   1;
   1,  1;
   2,  2,   1;
   3,  5,   3,   1;
   6, 10,   9,   4,  1;
  10, 22,  22,  14,  5,  1;
  20, 44,  54,  40, 20,  6, 1;
  35, 93, 123, 109, 65, 27, 7, 1;
Production matrix is
   1,  1;
   1,  1,  1;
  -1,  1,  1,  1;
   1, -1,  1,  1,  1;
  -1,  1, -1,  1,  1,  1;
   1, -1,  1, -1,  1,  1,  1;
  -1,  1, -1,  1, -1,  1,  1, 1;
   1, -1,  1, -1,  1, -1,  1, 1, 1;
  -1,  1, -1,  1, -1,  1, -1, 1, 1, 1; (End)
		

Crossrefs

Row sums: A054341.

Programs

  • GAP
    A053121:= function(n,k)
        if ((n-k+1) mod 2)=0 then return 0;
        else return (k+1)*Binomial(n+1, Int((n-k)/2))/(n+1);
        fi;
      end;
    T:= function(n,k)
        return Sum([k..n], j-> Binomial(j,k)*A053121(n,j));
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 21 2019
  • Magma
    A053121:= func< n,k | ((n-k+1) mod 2) eq 0 select 0 else (k+1)*Binomial(n+1, Floor((n-k)/2))/(n+1) >;
    T:= func< n,k | (&+[Binomial(j,k)*A053121(n,j): j in [k..n]]) >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 21 2019
    
  • Mathematica
    c[n_, j_] /; n < j || OddQ[n - j] = 0; c[n_, j_] = (j + 1) Binomial[n + 1, (n - j)/2]/(n + 1); t[n_, k_] := Sum[c[n, j]*Binomial[j, k], {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[;; 66]] (* Jean-François Alcover, Jul 13 2011, after Philippe Deléham *)
  • PARI
    A053121(n,k) = if((n-k+1)%2==0, 0, (k+1)*binomial(n+1, (n-k)\2)/(n+1) );
    T(n,k) = sum(j=k,n, A053121(n,j)*binomial(j,k));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    def A053121(n, k):
        if (n-k+1) % 2==0: return 0
        else: return (k+1)*binomial(n+1, ((n-k)//2))/(n+1)
    def T(n,k): return sum(binomial(j,k)*A053121(n,j) for j in (k..n))
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 21 2019
    

Formula

G.f. for column m: cbi(x)*(x*cbi(x))^m, with cbi(x) := (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1-x-x^2*c(x^2)), where c(x) is the g.f. for Catalan numbers A000108.
T(n,k) = Sum_{j>=0} A053121(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n,k) = T(n-1,k-1) + T(n-1,l) + Sum_{j>=0} T(n-1,k+1+j)*(-1)^j. - Philippe Deléham, Feb 23 2012

A018224 a(n) = binomial(n, floor(n/2))^2 = A001405(n)^2.

Original entry on oeis.org

1, 1, 4, 9, 36, 100, 400, 1225, 4900, 15876, 63504, 213444, 853776, 2944656, 11778624, 41409225, 165636900, 590976100, 2363904400, 8533694884, 34134779536, 124408576656, 497634306624, 1828114918084, 7312459672336, 27043120090000, 108172480360000, 402335398890000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of rooted two-vertex (or, dually, two-face) regular planar maps of valency n+1. - Valery A. Liskovets, Oct 19 2005
If A is a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic), then a(n)=(-1)^n*E[(tr(A^4))^n]. - Andrew V. Sutherland, Apr 01 2008
Number of square lattice walks with unit steps in all four directions (NSWE), starting at the origin, ending on the y-axis, and never going below the x-axis. Row sums of A378061. - Peter Luschny, Dec 08 2024

Examples

			The 9 lattice walks defined in the comments: 'NNN', 'NNS', 'NSN', 'NWE', 'NEW', 'WNE', 'WEN', 'ENW', 'EWN'.
		

Crossrefs

Programs

  • Maple
    s := x -> (1+x)*EllipticK(x)/(x*Pi/2)-1/x:
    seq(4^n*coeff(series(s(x),x,n+2),x,n),n=0..23); # Peter Luschny, Oct 14 2015
  • Mathematica
    (* Note that Mathematica uses a different definition of the EllipticK function. *)
    CoefficientList[Series[(-Pi + (2 + 8 x) EllipticK[16 x^2])/(4 Pi x), {x,0,23}], x] (* Peter Luschny, Oct 14 2015 *)
    Table[Binomial[n,Floor[n/2]]^2,{n,0,30}] (* Harvey P. Dale, Dec 02 2022 *)
  • PARI
    vector(50, n, n--; binomial(n, n\2)^2) \\ Altug Alkan, Oct 14 2015

Formula

E.g.f.: BesselI(0, 2*x)*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Vladeta Jovovic, Jun 12 2005
G.f. (1+1/(4*x))*hypergeom([1/2, 1/2],[1],16*x^2)-1/(4*x). - Mark van Hoeij, Oct 13 2009
a(n) = (n!/(floor(n/2)!*floor((n+1)/2)!))^2. - Peter Luschny, Apr 29 2014
a(n) = A056040(n) * A056040(n+1) / (n+1). - Peter Luschny, Apr 29 2014
a(n) = 4^n*[x^n]((1+x)*EllipticK(x)/(x*Pi/2)-1/x). - Peter Luschny, Oct 14 2015
a(n) ~ 4^n*((2*n+3)/(2*n+1))^((-1)^n/2)/((n+1)*Pi/2). - Peter Luschny, Oct 14 2015
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*C(k)*binomial(2*n-2*k,n-k) where C(k) are Catalan numbers (A000108), see Prodinger. - Michel Marcus, Nov 19 2019
From Peter Bala, Jul 03 2023: (Start)
Right hand side of the binomial sum identity (1/2)*Sum_{k = 0..n+1} (-1)^k*4^(n+1-k)*binomial(n+1,k)*binomial(n+k,k)*binomial(2*k,k) = a(n).
a(n) = (1/2)*4^(n+1) * hypergeom([n+1, -n-1, 1/2], [1, 1], 1).
P-recursive:
(2*n - 1)*(n + 1)^2*a(n) = 4*(2*n^2 - 1)*a(n-1) + 16*(2*n + 1)*(n - 1)^2*a(n-2) with a(0) = a(1) = 1. (End)

A034974 Number of divisors of binomial(n, floor(n/2)), the terms of A001405.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 4, 8, 12, 18, 16, 24, 24, 32, 24, 48, 32, 48, 32, 48, 96, 128, 64, 96, 144, 192, 288, 384, 384, 480, 192, 384, 512, 768, 768, 1152, 1152, 1536, 1536, 2304, 1536, 2048, 1536, 2048, 3072, 3840, 2304, 3456, 3456, 4608, 4608, 6144, 3072, 3840, 6144
Offset: 1

Views

Author

Keywords

Examples

			a(59) = d(C(59,29)) = d(59132290782430712) = 8192 = 4*2^11.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,Binomial[n,Floor[n/2]]],{n,60}] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    a(n) = numdiv(binomial(n, n\2)); \\ Michel Marcus, Feb 25 2014

Formula

a(n) = A000005(A001405(n)). - Michel Marcus, Feb 25 2014

A034973 Number of distinct prime factors in central binomial coefficients C(n, floor(n/2)), the terms of A001405.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 13, 13, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 14, 14, 15, 15, 15, 15, 16
Offset: 1

Views

Author

Keywords

Comments

Sequence is not monotonic. E.g., a(44)=10, a(45)=9 and a(46)=10. The number of prime factors of n! is pi(n), but these numbers are lower.
Prime factors are counted without multiplicity. - Harvey P. Dale, May 20 2012

Examples

			a(25) = omega(binomial(25,12)) = omega(5200300) = 6 because the prime factors are 2, 5, 7, 17, 19, 23.
		

Crossrefs

Programs

A080383 Number of j (0 <= j <= n) such that the central binomial coefficient C(n,floor(n/2)) = A001405(n) is divisible by C(n,j).

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 8, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 8, 3, 6, 5, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 7, 10, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6
Offset: 0

Views

Author

Labos Elemer, Mar 12 2003

Keywords

Examples

			For n <= 500 only a few values of a(n) arise: {1,2,3,4,5,6,7,8,10,11,14}.
From _Jon E. Schoenfield_, Sep 15 2019: (Start)
a(n)=1 occurs only at n=0.
a(n)=2 occurs only at n=1.
a(n)=3 occurs for all even n > 0 such that C(n,j) divides C(n,n/2) only at j = 0, n/2, and n. (This is the case for about 4/9 of the first 100000 terms, and there appear to be nearly as many terms for which a(n)=6.)
a(n)=4 occurs only at n=3.
For n <= 100000, the only values of a(n) that occur are 1..16, 18, 19, 22, 23, and 26.
   k | Indices n (up to 100000) at which a(n)=k
  ---+-------------------------------------------------------
   1 | 0
   2 | 1
   3 | 2, 4, 6, 8, 10, 14, 16, 18, 20, 22, 24, ...
   4 | 3
   5 | 40, 176, 208, 480, 736, 928, 1248, 1440, ... (A327430)
   6 | 5, 7, 9, 11, 15, 17, 19, 21, 23, 27, 29, ... (A080384)
   7 | 12, 30, 56, 84, 90, 132, 154, 182, 220, ...  (A080385)
   8 | 25, 37, 169, 199, 201, 241, 397, 433, ...    (A080386)
   9 | 1122, 1218, 5762, 11330, 12322, 15132, ...   (A327431)
  10 | 13, 31, 41, 57, 85, 91, 133, 155, 177, ...   (A080387)
  11 | 420, 920, 1892, 1978, 2444, 2914, 3198, ...
  12 | 1103, 1703, 2863, 7773, 10603, 15133, ...
  13 | 12324, 37444
  14 | 421, 921, 1123, 1893, 1979, 1981, 2445, ...
  15 | 4960, 6956, 13160, 16354, 18542, 24388, ...
  16 | 11289, 16483, 36657, 62653, 89183
  17 |
  18 | 4961, 6957, 12325, 13161, 16355, 18543, ...
  19 | 16356, 88510, 92004
  20 |
  21 |
  22 | 16357, 88511, 90305, 92005
  23 | 90306
  24 |
  25 |
  26 | 90307
(End)
		

Crossrefs

Programs

  • Magma
    [#[j:j in [0..n]| Binomial(n,Floor(n/2)) mod Binomial(n,j) eq 0]:n in [0..100]]; // Marius A. Burtea, Sep 15 2019
  • Mathematica
    Table[Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/Binomial[n, j]], {j, 0, n}], True], {n, 0, 500}] (* adapted by Vincenzo Librandi, Jul 29 2017 *)
  • PARI
    a(n) = my(b=binomial(n, n\2)); sum(i=0, n, (b % binomial(n, i)) == 0); \\ Michel Marcus, Jul 29 2017
    
  • PARI
    a(n) = {if(n==0, return(1)); my(bb = binomial(n, n\2), b = n); res = 2 + !(n%2) + 2 * (n>2 && n%2 == 1); for(i = 2, (n-1)\2, res += 2*(bb%b==0); b *= (n + 1 - i) / i); res} \\ David A. Corneth, Jul 29 2017
    

Extensions

Edited by Dean Hickerson, Mar 14 2003
Offset corrected by David A. Corneth, Jul 29 2017

A056175 Number of nonunitary prime divisors of the central binomial coefficient C(n, floor(n/2)) (A001405).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 2, 2, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

Number of prime divisors of the largest square dividing A001405(n). (A prime divisor is nonunitary iff its exponent exceeds 1.)

Examples

			For n=10, binomial(10, 5) = 252 = 2*2*3*3*7 has 3 prime divisors of which only one, p=7, is unitary, while 2 and 3 are not. So a(10)=2.
For n=256, binomial(256, 128) also has only 2 prime divisors (3 and 13) whose exponents exceed 1 (4 and 2, respectively), thus a(256)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[FactorInteger[Binomial[n, Floor[n/2]]][[All, -1]], e_ /; e > 1], {n, 105}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n)=omega(core(binomial(n, n\2), 1)[2]) \\ Charles R Greathouse IV, Mar 09 2017

Formula

a(n) = A001221(A000188(A001405(n))).
a(n) = A001221(A056057(n)).

Extensions

Edited by Jon E. Schoenfield, Mar 05 2017

A056173 Number of unitary prime divisors of central binomial coefficient C(n, floor(n/2)) (A001405).

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 3, 2, 1, 4, 3, 3, 3, 3, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 4, 3, 3, 5, 5, 6, 7, 7, 6, 8, 7, 7, 7, 9, 8, 9, 9, 9, 9, 6, 6, 8, 7, 7, 7, 7, 7, 8, 8, 11, 11, 12, 12, 11, 11, 11, 11, 10, 11, 13, 12, 13, 12, 12, 12, 14, 13, 13, 13, 13, 13, 11, 11, 14, 13, 12, 12, 14, 14, 13, 13, 13
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

A prime divisor is unitary iff its exponent equals 1.

Examples

			For n = 10: binomial(10,5) = 252 = 2*2*3*3*7 has 3 prime factors of which only one, p = 7, is unitary. So a(10) = 1.
		

Crossrefs

Programs

Formula

a(n) = A056169(A001405(n)). - Michel Marcus, Oct 27 2017 [corrected by Amiram Eldar, Jul 22 2024]

A205573 Array M read by antidiagonals in which successive rows evidently converge to A001405 (central binomial coefficients).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 1, 1, 1, 2, 3, 6, 8, 1, 1, 1, 2, 3, 6, 10, 13, 1, 1, 1, 2, 3, 6, 10, 19, 21, 1, 1, 1, 2, 3, 6, 10, 20, 33, 34, 1, 1, 1, 2, 3, 6, 10, 20, 35, 61, 55, 1, 1, 1, 2, 3, 6, 10, 20, 35, 69, 108, 89, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 29 2012

Keywords

Comments

CONJECTURE 1. Let M(n,k) (n,k >= 0) denote the entry in row n and column k of the array. For all n, M(n,j) = A001405(j), j=0,...,2*n+1; hence row n of M -> A001405 as n -> infinity.
Taking finite differences of even numbered columns from the top -> down yields triangle A205946 with row sums A000984, central binomial coefficients; while odd numbered columns yield triangle A205945 with row sums A001700. A205946 and A205945 represent the bisection of A191314. - Gary W. Adamson, Feb 01 2012

Examples

			Array begins:
  1, 1, 1, 1, 1,  1,  1,  1,  1,   1,   1,...
  1, 1, 2, 3, 5,  8, 13, 21, 34,  55,  89,...
  1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197,...
  1, 1, 2, 3, 6, 10, 20, 35, 69, 124, 241,...
  1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251,...
  1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252,...
  ...
According to Conjecture 2, row n = 3 has g.f. F_3(x) = (1-2*x^2)/(1-x-3*x^2+2*x^3+x^4).
		

Crossrefs

Formula

Let N=2*n+3. For each n>0, define the (n+1) X (n+1) tridiagonal unit-primitive matrix (see [Jeffery]) B_n = A_{N,1} = [0,1,0,...,0; 1,0,1,0,...,0; 0,1,0,1,0,...,0; ...; 0,...,0,1,0,1; 0,...,0,1,1], and put B_0 = [1]. Then, for all n, M(n,k)=[(B_n)^k]{n+1,n+1}, k=0,1,..., where X{n+1,n+1} denotes the lower right corner entry of X.
CONJECTURE 2 (Rows of M). Let S(n,i) denote term i in row n of A115139, i=0,...,floor(n/2), and let T(n,j) denote term j in row n of A108299, j=0,...,n. The generating function for row n of M is of the form F_n(x) =sum[i=0,...,floor(n/2) S(n,i)*x^(2*i)]/sum[j=0,...,n T(n,j)*x^j].
CONJECTURE 3 (Columns of M). Let D(m,k) denote term m in column k of A191314, m=0,...,floor(k/2). The generating function for column k of M is of the form G_k(x)=sum[m=0,...,floor(k/2) D(m,k)*x^m]/(1-x).

A048621 a(n) = A001222(A001405(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 4, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 10, 11, 8, 9, 10, 11, 10, 11, 11, 12, 11, 12, 11, 12, 11, 12, 14, 15, 12, 13, 13, 14, 14, 15, 13, 14, 13, 14, 15, 16, 14, 15, 15, 16, 14, 15, 15, 16, 15, 16, 16, 17, 14, 15, 15, 16, 17, 18, 18, 19
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[Binomial[n, Floor[n/2]]], {n, 1, 50}] (* G. C. Greubel, May 12 2017 *)
  • PARI
    for(n=1,100, print1(bigomega(binomial(n,floor(n/2))), ", ")) \\ G. C. Greubel, May 12 2017

Formula

a(n) = A001222(A001405(n)).

Extensions

Simpler name using formula by Joerg Arndt, May 14 2017
Showing 1-10 of 434 results. Next