cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A034973 Number of distinct prime factors in central binomial coefficients C(n, floor(n/2)), the terms of A001405.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 13, 13, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 14, 14, 15, 15, 15, 15, 16
Offset: 1

Views

Author

Keywords

Comments

Sequence is not monotonic. E.g., a(44)=10, a(45)=9 and a(46)=10. The number of prime factors of n! is pi(n), but these numbers are lower.
Prime factors are counted without multiplicity. - Harvey P. Dale, May 20 2012

Examples

			a(25) = omega(binomial(25,12)) = omega(5200300) = 6 because the prime factors are 2, 5, 7, 17, 19, 23.
		

Crossrefs

Programs

A056059 GCD of largest square and squarefree part of central binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 6, 2, 1, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 6, 3, 1, 1, 1, 2, 3, 6, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 3, 6, 6, 3, 1, 2, 2, 1, 2, 1, 3, 6, 1, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Examples

			n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, squarefree part is 858. So a(14) = gcd(4,858) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[First@ Select[Reverse@ Divisors@ #, IntegerQ@ Sqrt@ # &], Times @@ Power @@@ Map[{#1, Mod[#2, 2]} & @@ # &, FactorInteger@ #]] &@ Binomial[n, Floor[n/2]], {n, 80}] (* Michael De Vlieger, Feb 18 2017, after Zak Seidov at A007913 *)
  • PARI
    A001405(n) = binomial(n, n\2);
    A055229(n) = { my(c=core(n)); gcd(c, n/c); } \\ Charles R Greathouse IV, Nov 20 2012
    A056059(n) = A055229(A001405(n)); \\ Antti Karttunen, Jul 20 2017
    
  • Python
    from sympy import binomial, gcd
    from sympy.ntheory.factor_ import core
    def a001405(n): return binomial(n, n//2)
    def a055229(n):
        c = core(n)
        return gcd(c, n//c)
    def a(n): return a055229(a001405(n))
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017

Formula

a(n) = A055229(A001405(n)), where A055229(n) = gcd(A008833(n), A007913(n)).

Extensions

Formula clarified by Antti Karttunen, Jul 20 2017

A056057 The largest square which divides n-th central binomial coefficient.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 9, 36, 1, 4, 4, 4, 9, 9, 1, 4, 1, 4, 4, 4, 1, 4, 100, 100, 900, 900, 36, 144, 9, 9, 9, 36, 25, 100, 100, 100, 9, 36, 4, 4, 4, 4, 900, 3600, 225, 900, 1764, 1764, 1764, 1764, 196, 784, 4, 4, 4, 16, 4, 16, 16, 16, 441, 441, 49, 196, 49, 196, 36, 36, 1, 4
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[First@ Select[Reverse@ Divisors@ Binomial[n, Floor[n/2]], IntegerQ@ Sqrt@ # &], {n, 72}] (* Michael De Vlieger, Feb 18 2017 *)
    a[n_] := Times @@ (First[#]^(2*Floor[Last[#]/2]) & /@ FactorInteger[Binomial[n, Floor[n/2]]]); Array[a, 100] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A008833(A001405(n)).
a(A046098(n)) = 1.

A056060 The powerfree part of the central binomial coefficients.

Original entry on oeis.org

1, 2, 3, 6, 10, 5, 35, 70, 14, 7, 462, 231, 429, 429, 715, 1430, 24310, 12155, 92378, 46189, 88179, 88179, 1352078, 676039, 52003, 52003, 7429, 7429, 1077205, 1077205, 33393355, 66786710, 43214930, 21607465, 181502706, 90751353, 176726319, 176726319, 7658140490
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Examples

			n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, and the squarefree part is 858. So GCD(4,858) = 2 and a(14) = 858/2 = 429.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Denominator[(b = Binomial[n, Floor[n/2]])/(Times @@ First /@ FactorInteger[b])^2]; Array[a, 36] (* Amiram Eldar, Sep 05 2020 *)

Formula

a(n) = A055231(A001405(n)).

Extensions

New name and more terms from Amiram Eldar, Sep 05 2020

A048275 a(n) = maximal value for number of divisors of C(n,k) for k=0..n.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 4, 8, 12, 18, 16, 24, 24, 32, 24, 48, 32, 60, 48, 80, 96, 128, 64, 160, 192, 192, 288, 480, 384, 480, 192, 576, 768, 768, 1024, 1536, 1152, 1536, 1536, 2304, 1536, 2880, 2304, 2560, 3072, 3840, 2304, 3456, 3840, 5184, 6144, 9216, 5120
Offset: 1

Views

Author

Keywords

Examples

			If n=20, then the number of divisors of C(20,k) is one of {1,6,8,16,24,40,48,64,80}, so a(20) = 80.
		

Crossrefs

Programs

  • Mathematica
    Table[Max@ Map[DivisorSigma[0, #] &, Binomial[n, Range[0, n]]], {n, 53}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n) = vecmax(vector(n+1, k, numdiv(binomial(n,k-1)))); \\ Michel Marcus, Mar 05 2017

A048484 a(n) = abs(floor(n/2) - A048299(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 0, 1, 1, 1, 0, 0, 2, 3, 0, 0, 3, 3, 2, 2, 3, 3, 2, 7, 7, 1, 4, 4, 6, 5, 4, 4, 1, 2, 2, 2, 1, 1, 0, 0, 3, 3, 2, 6, 10, 7, 5, 4, 10, 5, 9, 8, 6, 3, 8, 7, 8, 8, 2, 1, 10, 10, 0, 0, 5, 4, 2, 2, 3, 7, 8, 7, 5, 5, 6, 3, 7, 7, 8, 4, 5, 6, 6, 11, 11, 10, 10, 4, 9, 8, 8, 7, 7, 6, 6, 5, 7, 13, 15
Offset: 1

Views

Author

Keywords

Examples

			If n = 100 then the number of distinct primes at central C(100, 50) coefficient is 15, while the maximal is 18 which appears first at k = 35. Thus a(100) = 50 - 35 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[Abs@ Floor[n/2] - Min@ MaximalBy[Range[0, n], PrimeNu@ Binomial[n, #] &], {n, 100}] (* Michael De Vlieger, Aug 01 2017 *)

A048485 a(n) = floor(n/2) - A048475(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 2, 2, 3, 3, 3, 0, 3, 1, 1, 0, 1, 1, 0, 0, 4, 3, 3, 3, 2, 1, 0, 0, 0, 0, 2, 2, 1, 1, 3, 0, 0, 0, 1, 1, 5, 3, 4, 4, 3, 5, 0, 0, 8, 1, 7, 8, 2, 11, 1, 4, 4, 10, 3, 6, 11, 7, 7, 6, 6, 5, 4, 4, 7, 3, 2, 2, 5, 1, 0, 0, 0, 3, 2, 2, 1, 1, 0, 0, 0, 1, 0, 0, 3, 3
Offset: 1

Views

Author

Keywords

Examples

			If n=51 then the number of divisors of the central binomial coefficient binomial(51,25) is 4608, while the maximal number of divisors of binomial(51,k) is 6144, which appears first at k=24; thus the deviation a(51) = |25-24| = 1 is small.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{d = DivisorSigma[0, Binomial[n, Range[0, n/2]]]}, Floor[n/2] - Position[d, Max[d], 1, 1][[1, 1]] + 1]; Array[a, 100] (* Giovanni Resta, May 14 2018 *)

A048621 a(n) = A001222(A001405(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 4, 5, 4, 5, 5, 6, 5, 6, 5, 6, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 10, 11, 8, 9, 10, 11, 10, 11, 11, 12, 11, 12, 11, 12, 11, 12, 14, 15, 12, 13, 13, 14, 14, 15, 13, 14, 13, 14, 15, 16, 14, 15, 15, 16, 14, 15, 15, 16, 15, 16, 16, 17, 14, 15, 15, 16, 17, 18, 18, 19
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[Binomial[n, Floor[n/2]]], {n, 1, 50}] (* G. C. Greubel, May 12 2017 *)
  • PARI
    for(n=1,100, print1(bigomega(binomial(n,floor(n/2))), ", ")) \\ G. C. Greubel, May 12 2017

Formula

a(n) = A001222(A001405(n)).

Extensions

Simpler name using formula by Joerg Arndt, May 14 2017

A048569 Values of k for which the number of divisors of the central binomial coefficient C(k, floor(k/2)) exceeds the number of divisors of all other binomial coefficients C(k,j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16, 22, 26, 29, 30, 37, 38, 39, 40, 46, 47, 48, 57, 58, 85, 86, 87, 93, 94, 95, 97, 98, 106, 107, 122, 123, 124, 125, 147, 148, 149, 150, 157, 158, 159, 178, 194, 206, 214, 219, 220, 226, 230, 232, 247, 278, 283, 284, 285, 286, 316
Offset: 1

Views

Author

Keywords

Comments

k is in the sequence if the number of divisors of the central binomial coefficient C(k, floor(k/2)) (i.e., C(k, k/2) for even k, and C(k,(k-1)/2) = C(k,(k+1)/2) for odd k) is greater than the number of divisors of C(k, j) for all other values of j.

Examples

			If n=10 and k=0..10 then A000005(binomial(10,k)) = 1, 4, 6, 16, 16, 18, 16, 16, 6, 4, 1. The maximum value of A000005(binomial(10,k)), i.e., 18 occurs only at k=5, the central coefficient. Thus 10 is in this sequence.
		

Crossrefs

Extensions

Edited by Jon E. Schoenfield, May 19 2018

A036541 Deficit of central binomial coefficients in terms of number of prime factors: a(n) shows how many fewer prime factors the n-th central binomial coefficient has than n!.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 4, 4, 3, 3, 5, 5, 6, 6, 6, 5, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 8
Offset: 1

Views

Author

Keywords

Comments

Primes not exceeding n/2 are missing from this kit of prime divisors. Note differences of consecutive deficits change sign like: 0,1,0,-2,0,-1,0,+2,0.
a(2n) = a(2n-1) unless n = 2^k for some k >= 1, in which case a(2n) = a(2n-1)-1. - Robert Israel, May 31 2016

Examples

			a(1000) = PrimePi(1000) - omega(binomial(1000, 500)) = 168 - 116 = 52.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) .. a(N) G:= proc(p,n) local m,Ln,Lm;
       m:= floor(n/2);
       Ln:= convert(n,base,p);
       Lm:= convert(m,base,p);
       hastype(Ln[1..nops(Lm)]-Lm,negative)
    end proc:
    S[1]:= {}:
    S[2]:= {}:
    for n from 3 to N do
      if n::even then
         if n = 2^ilog2(n) then S[n]:= S[n-1] minus {2}
         else S[n]:= S[n-1]
         fi
      else
         S[n]:= (S[n-1] minus select(G,numtheory:-factorset(n),n)) union remove(G,numtheory:-factorset((n+1)/2),n);
      fi;
    od:
    seq(nops(S[i]),i=1..N); # Robert Israel, May 31 2016
  • Mathematica
    Table[PrimePi@ n - PrimeNu[Binomial[n, Floor[n/2]]], {n, 105}] (* Michael De Vlieger, Jun 01 2016 *)

Formula

a(n) = omega(n!) - omega(binomial(n, floor(n/2))) = PrimePi(n) - omega(binomial(n, floor(n/2))).
Showing 1-10 of 11 results. Next