cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A020738 Consider number of divisors of binomial(n, k), k=0..n; a(n) = multiplicity of the maximum value.

Original entry on oeis.org

2, 1, 2, 1, 2, 1, 4, 3, 4, 1, 4, 3, 2, 1, 2, 1, 6, 2, 6, 2, 6, 1, 8, 2, 2, 1, 4, 2, 2, 1, 10, 4, 2, 5, 2, 2, 2, 1, 2, 1, 6, 2, 2, 2, 4, 1, 2, 1, 2, 2, 6, 2, 4, 2, 2, 4, 2, 1, 10, 2, 2, 3, 4, 8, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 6, 2, 2, 2, 12, 2, 2, 1, 2, 4, 4, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 2, 4, 2
Offset: 1

Views

Author

Keywords

Examples

			If n = 23, the numbers of divisors of {binomial(23, k)} are {1, 2, 4, 8, 16, 16, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 32, ...}. The maximum occurs 8 times, so a(23) = 8.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,k;
      L:= [seq(numtheory:-tau(binomial(n,k)),k=0..n)];
      numboccur(max(L),L)
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 17 2016
  • Mathematica
    a[ n_] := If[ n < 1, 0, Last @ Last @ Tally @ Array[ Length @ Divisors @ Binomial[n, #] &, n+1, 0]]; (* Michael Somos, Nov 17 2016 *)

A020740 Max_{k=0..n} d(C(n,k)) - d(C(n,[ n/2 ])), where d() = number of divisors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 16, 32, 0, 0, 0, 64, 48, 0, 0, 96, 0, 0, 0, 192, 256, 0, 256, 384, 0, 0, 0, 0, 0, 832, 768, 512, 0, 0, 0, 0, 384, 576, 1536, 3072, 2048, 8448, 7680, 5632, 0, 0, 0, 14336, 3584, 0, 0, 3072
Offset: 1

Views

Author

Keywords

Examples

			n=20, d(C[ 20,10 ])= 48 and the d(C[ 20,k ]) values are 1,6,8,16,24,40,64,80. The maximum is 80, so the difference is 80-48 = 32.
		

Crossrefs

Programs

  • Maple
    020740 := proc(n)
        local a,k;
        a := -1 ;
        for k from 0 to n do
            a := max(a, numtheory[tau](binomial(n,k))) ;
        end do:
        a-numtheory[tau](binomial(n,floor(n/2))) ;
    end proc:
    seq(A020740(n),n=1..80); # R. J. Mathar, Nov 19 2024
  • Mathematica
    Table[Max[Table[DivisorSigma[0,Binomial[n,k]],{k,0,n}]] - DivisorSigma[ 0,Binomial[n,Floor[n/2]]],{n,70}] (* Harvey P. Dale, Jul 18 2013 *)
Showing 1-2 of 2 results.