cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A137986 Decimal expansion of the number whose Pierce expansion has the sequence of factorial numbers (A000142) as coefficients.

Original entry on oeis.org

4, 2, 0, 1, 0, 9, 9, 9, 3, 8, 8, 3, 4, 8, 7, 3, 4, 1, 7, 6, 1, 6, 5, 4, 5, 3, 7, 9, 4, 0, 0, 0, 9, 0, 3, 5, 9, 2, 8, 9, 1, 1, 2, 4, 7, 2, 1, 8, 6, 2, 5, 2, 4, 2, 0, 7, 4, 4, 5, 2, 5, 0, 5, 2, 5, 3, 8, 3, 5, 1, 0, 1, 5, 3, 7, 8, 1, 3, 5, 8, 7, 7, 5, 6, 1, 5, 3, 4, 7, 1, 0, 3, 5, 8, 4, 1, 9, 4, 5
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,k; a:=0; k:=1; for i from 0 by 1 to n do k:=k*i!; a:=a+(-1)^i/k; print(evalf(a,100)); od; end: P(100);
  • Mathematica
    RealDigits[N[(Sum[(-1)^n*Product[1/((k - 1)!), {k, 1, n}], {n, 1, 250}]), 100]][[1]] (* G. C. Greubel, Jan 01 2017 *)

A137987 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of factorial numbers (A000142) as coefficients.

Original entry on oeis.org

3, 8, 6, 5, 7, 2, 8, 5, 1, 1, 2, 0, 0, 8, 5, 1, 2, 8, 5, 3, 8, 8, 3, 3, 5, 3, 0, 4, 8, 7, 3, 9, 2, 3, 2, 6, 8, 0, 1, 1, 2, 7, 2, 9, 8, 5, 8, 9, 2, 7, 4, 6, 4, 6, 8, 8, 9, 2, 5, 2, 2, 1, 3, 4, 4, 0, 4, 1, 0, 1, 1, 7, 3, 4, 1, 4, 5, 8, 4, 0, 7, 3, 3, 2, 1, 0, 1, 3, 6, 7, 0, 3, 3, 5, 9, 3, 9, 4, 7
Offset: 0

Views

Author

Paolo P. Lava and Giorgio Balzarotti, Feb 26 2008, Apr 18 2008

Keywords

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,k; a:=0; k:=1; for i from 0 by 1 to n do k:=k*i!; a:=a+1/k; print(evalf(1/a,100)); od; end: P(100);
  • Mathematica
    RealDigits[N[(1/Sum[Product[1/((k - 1)!), {k, 1, n}], {n, 1, 250}]), 100]][[1]] (* G. C. Greubel, Jan 02 2017 *)

Formula

Equals 1/A287013. - Amiram Eldar, Nov 19 2020

A137988 Decimal expansion of the number whose Pierce expansion has the sequence of double factorial numbers (A000165) as coefficients.

Original entry on oeis.org

3, 5, 2, 8, 0, 6, 4, 3, 8, 1, 0, 6, 6, 5, 0, 0, 3, 6, 4, 6, 2, 1, 2, 3, 6, 0, 5, 3, 1, 0, 7, 3, 0, 0, 8, 6, 3, 1, 1, 1, 4, 5, 9, 6, 9, 4, 4, 4, 9, 9, 0, 1, 7, 4, 0, 2, 7, 4, 9, 4, 6, 3, 1, 0, 7, 1, 8, 6, 4, 7, 0, 1, 5, 3, 3, 6, 5, 6, 5, 4, 4, 1, 4, 5, 6, 9, 0, 9, 1, 8, 9, 6, 0, 9, 4, 8, 3, 3, 9
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,j,k,w; a:=0; w:=1; for i from 0 by 1 to n do k:=i; j:=i-2; while j>0 do k:=k*j; j:=j-2; od; if (i=0 or i=1) then k:=1; fi; if i=2 then k:=2; fi; w:=w*k; a:=a+(-1)^i/w; print(evalf(a,100)); od; end: P(100);
  • Mathematica
    RealDigits[N[(Sum[(-1)^n*Product[1/((k + 1)!!), {k, 1, n}], {n, 1, 250}]), 100]][[1]] (* G. C. Greubel, Jan 01 2017 *)

A113296 Cumulative product of double factorial A006882.

Original entry on oeis.org

1, 1, 2, 6, 48, 720, 34560, 3628800, 1393459200, 1316818944000, 5056584744960000, 52563198423859200000, 2422112183371431936000000, 327312129899898454671360000000, 211155601241022491077587763200000000
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Examples

			a(10) = 1!! * 2!! * 3!! * 4!! * 5!! * 6!! * 7!! * 8!! * 9!! * 10!!
= 1 * 2 * 3 * 8 * 15 * 48 * 105 * 384 * 945 * 3840
= 5056584744960000 = 2^23 x 3^9 x 5^4 x 7^2.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[k!!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
    Table[2^((6n^2+12n+2-3(-1)^n)/24) Pi^(((-1)^n-2n-3)/8) Exp[-1/8] Glaisher^(3/2) BarnesG[(2n+7+(-1)^n)/4] BarnesG[(2n+7-(-1)^n)/4], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)
    FoldList[Times,Range[0,20]!!] (* Harvey P. Dale, Oct 29 2019 *)

Formula

a(n) = Product_{k=0..n} k!!.
a(n) = n!! * a(n-1) where a(0) = 0, a(1) = 1 and n >= 2.
a(n) = n*(n-2)!! * a(n-1) where a(0) = 0, a(1) = 1 and n >= 2.
a(n) = 2^((6*n^2+12*n+2-3*(-1)^n)/24) * Pi^(((-1)^n-2*n-3)/8) * exp(-1/8) * A^(3/2) * G((2n+7+(-1)^n)/4) * G((2n+7-(-1)^n)/4), where A is the Glaisher-Kinkelin constant (A074962), G(x) is the Barnes G-function. - Vladimir Reshetnikov, Nov 11 2015
Sum_{n>=0} 1/a(n) = 1/A137989. - Amiram Eldar, Nov 09 2020
Sum_{n>=0} (-1)^n/a(n) = A137988. - Amiram Eldar, Apr 12 2021
Showing 1-4 of 4 results.