cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A051577 a(n) = (2*n + 3)!!/3 = A001147(n+2)/3.

Original entry on oeis.org

1, 5, 35, 315, 3465, 45045, 675675, 11486475, 218243025, 4583103525, 105411381075, 2635284526875, 71152682225625, 2063427784543125, 63966261320836875, 2110886623587616875, 73881031825566590625, 2733598177545963853125, 106610328924292590271875
Offset: 0

Views

Author

Keywords

Comments

Row m = 3 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147, A002866(n+1) (m=0..2 rows of A(3; m,n)).

Programs

  • GAP
    F:=Factorial;; List([0..25], n-> F(2*n+4)/(12*2^n*F(n+2)) ); # G. C. Greubel, Nov 12 2019
  • Magma
    F:=Factorial; [F(2*n+4)/(12*2^n*F(n+2)): n in [0..25]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq( doublefactorial(2*n+3)/3,n=0..10) ; # R. J. Mathar, Sep 29 2013
  • Mathematica
    Table[(2*n + 3)!!/3!!, {n, 0, 25}] (* G. C. Greubel, Jan 22 2017 *)
    a[n_] := Sum[(-1)^k*Binomial[2*n + 1, n + k]*StirlingS1[n + k + 1 ,k], {k , 1, n + 1}]; Flatten[Table[a[n], {n, 0, 18}]] (* Detlef Meya, Jan 17 2024 *)
  • PARI
    vector(26, n, (2*n+2)!/(6*2^n*(n+1)!) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    f=factorial; [f(2*n+4)/(12*2^n*f(n+2)) for n in (0..25)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n + 3)!!/3!!.
E.g.f.: 1/(1 - 2*x)^(5/2).
a(n) ~ (4/3) * sqrt(2) * n^2 * 2^n * e^(-n) * n^n *{1 + (47/24)*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
Ramanujan polynomials -psi_n(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = 2^(2 + n) * Gamma(n + 5/2)/(3 * sqrt(Pi)). - Gerson Washiski Barbosa, May 05 2010
From Peter Bala, May 26 2017: (Start)
D-finite with recurrence a(n+1) = (2*n + 5)*a(n) with a(0) = 1.
O.g.f. A(x) satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 5*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 2*x/(1 - 7*x/(1 - 4*x/(1 - 9*x/(1 - 6*x/(1 - ... - (2*n+3)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes, 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 5*x/(1 - 7*x/(1 - 2*x/(1 - 9*x/(1 - 4*x/(1 - 11*x/(1 - 6*x/(1 - ... - (2*n + 5)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 3*(sqrt(e*Pi/2) * erf(1/sqrt(2)) - 1), where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 3*(1 - sqrt(Pi/(2*e)) * erfi(1/sqrt(2))), where erfi is the imaginary error function. (End)
a(n) = Sum_{k=1..n+1} (-1)^k*binomial(2*n + 1, n + k)*Stirling1(n + k + 1, k). - Detlef Meya, Jan 17 2024

A051578 a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).

Original entry on oeis.org

1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0

Views

Author

Keywords

Comments

Row m=4 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A051577 (rows m=0..3), A051579, A051580, A051581, A051582, A051583.
Cf. A052587 (essentially the same).

Programs

  • GAP
    List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 29 2019
    seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *)
    Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
  • PARI
    vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
    
  • PARI
    apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
    
  • Sage
    [2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = (2*n+4)!!/4!!.
E.g.f.: 1/(1-2*x)^3.
a(n) ~ 2^(-1/2)*Pi^(1/2)*n^(5/2)*2^n*e^-n*n^n*{1 + 37/12*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
a(n) = (n+2)!*2^(n-1). - Zerinvary Lajos, Sep 23 2006. [corrected by Gary Detlefs, Apr 29 2019]
a(n) = 2^n*A001710(n+2). - R. J. Mathar, Feb 22 2008
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 6)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 6*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 6*x/(1 - 2*x/(1 - 8*x/(1 - 4*x/(1 - 10*x/(1 - 6*x/(1 - ... - (2*n + 4)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 6*x/(1 - 8*x/(1 - 2*x/(1 - 10*x/(1 - 4*x/(1 - 12*x/(1 - 6*x/(1 - ... - (2*n + 6)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 8*sqrt(e) - 12.
Sum_{n>=0} (-1)^n/a(n) = 8/sqrt(e) - 4. (End)
a(n) = A052587(n+2) for n > 0. - M. F. Hasler, Nov 10 2024

A051579 a(n) = (2*n+5)!!/5!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 7, 63, 693, 9009, 135135, 2297295, 43648605, 916620705, 21082276215, 527056905375, 14230536445125, 412685556908625, 12793252264167375, 422177324717523375, 14776206365113318125, 546719635509192770625
Offset: 0

Views

Author

Keywords

Comments

Row m=5 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A051577, A051578 (rows m=0..4).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+7) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+7: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    df:=doublefactorial; seq(df(2*n+5)/df(5), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[2^n*Pochhammer[7/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+5) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+7) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+5)!!/4!!.
E.g.f.: 1/(1-2*x)^(7/2).
a(n) ~ 8/15*sqrt(2)*n^3*2^n*e^-n*n^n*(1 + 107/24*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: G(0)/(10*x) -1/(5*x), where G(k)= 1 + 1/(1 - x*(2*k+5)/(x*(2*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 13 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 7)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 7*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 7*x/(1 - 2*x/(1 - 9*x/(1 - 4*x/(1 - 11*x/(1 - 6*x/(1 - ... - (2*n + 5)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 7*x/(1 - 9*x/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - ... - (2*n + 7)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 15 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 20, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 15 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)) - 10, where erfi is the imaginary error function. (End)

A051582 a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).

Original entry on oeis.org

1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
Offset: 0

Views

Author

Keywords

Comments

Row m=8 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1).
Cf. A051577, A051578, A051579, A051580, A051581 (rows m=0..7), A051583.

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
  • Magma
    F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    (2Range[0,20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *)
    Table[2^n*Pochhammer[5, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
    
  • Sage
    f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+8)!!/8!!.
E.g.f.: 1/(1-2*x)^5.
a(n) = (n+4)!*2^(n-1)/12. - Zerinvary Lajos, Sep 23 2006
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 10)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 10*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 10*x/(1 - 2*x/(1 - 12*x/(1 - 4*x/(1 - 14*x/(1 - 6*x/(1 - ... - (2*n + 8)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 10*x/(1 - 12*x/(1 - 2*x/(1 - 14*x/(1 - 4*x/(1 - 16*x/(1 - 6*x/(1 - ... - (2*n + 10)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 384*sqrt(e) - 632.
Sum_{n>=0} (-1)^n/a(n) = 384/sqrt(e) - 232. (End)

A051581 a(n) = (2*n+7)!!/7!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 9, 99, 1287, 19305, 328185, 6235515, 130945815, 3011753745, 75293843625, 2032933777875, 58955079558375, 1827607466309625, 60311046388217625, 2110886623587616875, 78102805072741824375, 3046009397836931150625
Offset: 0

Views

Author

Keywords

Comments

Row m=7 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1).
Cf. A051577, A051578, A051579, A051580 (rows m=0..6), A051582, A051583.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+9) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+9: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    df:=doublefactorial; seq(df(2*n+7)/df(7), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[2^n*Pochhammer[9/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+7) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+9) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+7)!!/7!!.
E.g.f.: 1/(1-2*x)^(9/2).
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + 1/(2*k+9)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 9)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 9*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 9*x/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - ... - (2*n + 7)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 9*x/(1 - 11*x/(1 - 2*x/(1 - 13*x/(1 - 4*x/(1 - 15*x/(1 - 6*x/(1 - ... - (2*n + 9)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 105 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 147, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 77 - 105 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)), where erfi is the imaginary error function. (End)

A051583 a(n) = (2*n+9)!!/9!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 11, 143, 2145, 36465, 692835, 14549535, 334639305, 8365982625, 225881530875, 6550564395375, 203067496256625, 6701227376468625, 234542958176401875, 8678089452526869375, 338445488648547905625, 13876265034590464130625
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A178647.
Cf. A051577, A051578, A051579, A051580, A051581, A051582 (rows m=0..8).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+11) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+11: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq(2^n*pochhammer(11/2,n), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    (2*Range[0,20]+9)!!/945 (* Harvey P. Dale, Apr 10 2019 *)
    Table[2^n*Pochhammer[11/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=0,n-2, 2*j+11) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+11) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+9)!!/9!!.
E.g.f.: 1/(1-2*x)^(11/2).
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 11)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 11*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 11*x/(1 - 2*x/(1 - 13*x/(1 - 4*x/(1 - 15*x/(1 - 6*x/(1 - ... - (2*n + 9)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 11*x/(1 - 13*x/(1 - 2*x/(1 - 15*x/(1 - 4*x/(1 - 17*x/(1 - 6*x/(1 - ... - (2*n + 11)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 945 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 1332, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 945 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)) - 684, where erfi is the imaginary error function. (End)

A257613 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 4.

Original entry on oeis.org

1, 4, 4, 16, 48, 16, 64, 416, 416, 64, 256, 3136, 6656, 3136, 256, 1024, 21888, 84608, 84608, 21888, 1024, 4096, 145664, 939520, 1692160, 939520, 145664, 4096, 16384, 939520, 9555456, 28195840, 28195840, 9555456, 939520, 16384, 65536, 5932032, 91475968, 415734784, 676700160, 415734784, 91475968, 5932032, 65536
Offset: 0

Views

Author

Dale Gerdemann, May 06 2015

Keywords

Examples

			Triangle begins as:
      1;
      4,      4;
     16,     48,      16;
     64,    416,     416,       64;
    256,   3136,    6656,     3136,      256;
   1024,  21888,   84608,    84608,    21888,    1024;
   4096, 145664,  939520,  1692160,   939520,  145664,   4096;
  16384, 939520, 9555456, 28195840, 28195840, 9555456, 939520, 16384;
		

Crossrefs

Cf. A051580 (row sums), A060187, A257609, A257611, A257615.
Similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,2,4], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
  • PARI
    f(x) = 2*x + 4;
    T(n, k) = t(n-k, k);
    t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
    
  • Sage
    def T(n,k,a,b): # A257613
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,2,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 4.
Sum_{k=0..n} T(n, k) = A051580(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 2, and b = 4. - G. C. Greubel, Mar 20 2022

A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,   1,    1,     1,     1,     1,     1,      1,      1, ...
[1] 0,   1,    2,     3,     4,     5,     6,      7,      8, ...
[2] 0,   3,    8,    15,    24,    35,    48,     63,     80, ...
[3] 0,  15,   48,   105,   192,   315,   480,    693,    960, ...
[4] 0, 105,  384,   945,  1920,  3465,  5760,   9009,  13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   3,   2,   1;
[4] 0,  15,   8,   3,  1;
[5] 0, 105,  48,  15,  4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From _Werner Schulte_, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1   1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2   3    4 ... |
    | 0   3   2        | * |     1 3 6 ... | = | 0   3   8  15   24 ... |
    | 0  15  18   6    |   |       1 4 ... |   | 0  15  48 105  192 ... |
    | 0 105 174 108 24 |   |         1 ... |   | 0 105 384 945 1920 ... |
    | . . .            |   | . . .         |   | . . .                  |. (End)
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..8);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the comment of Werner Schulte about the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371025(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));  #  Peter Luschny, Mar 08 2024
  • Mathematica
    A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
    Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 2**n * rising_factorial(k/2, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-2)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
From Werner Schulte, Mar 07 2024: (Start)
A(n, k) = Product_{i=1..n} (2*i - 2 + k).
E.g.f. of column k: Sum_{n>=0} A(n, k) * t^n / (n!) = (1/sqrt(1 - 2*t))^k.
A(n, k) = A(n+1, k-2) / (k - 2) for k > 2.
A(n, k) = Sum_{i=0..k-1} i! * A265649(n, i) * binomial(k-1, i) for k > 0.
E.g.f. of row n > 0: Sum_{k>=1} A(n, k) * x^k / (k!) = (Sum_{k=1..n} A035342(n, k) * x^k) * exp(x).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (k! * n!) = exp(x/sqrt(1 - 2*t)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1 / (1 - x/sqrt(1 - 2*t)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A035342(n, k) * k! for 1 <= k <= n and L(n, 0) = 0^n. Note that L(n, k) + L(n, k+1) = A265649(n, k) * k! for 0 <= k <= n. (End)

A286725 Third column of triangle A286724: Lah[2,1](n+2, 2), n >= 0.

Original entry on oeis.org

1, 18, 288, 4800, 86400, 1693440, 36126720, 836075520, 20901888000, 562028544000, 16186422067200, 497364605337600, 16247243774361600, 562404592189440000, 20567939371499520000, 792551263781781504000, 32098326183162150912000, 1363234794367239585792000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 17 2017

Keywords

Comments

See A286725 for the generalized Lah numbers Lah[2,1].

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(n - 1)*(n + 2)! * Binomial[n + 2, 2]; Array[a, 20, 0] (* Amiram Eldar, Dec 11 2022 *)

Formula

E.g.f.: d^2/dx^2 (x^2/(2*(1-2*x)^3)) = (1 + 8*x + 4*x^2)/(1 - 2*x)^5.
a(n) = 2^(n-1)*(n+2)!*binomial(n+2,2), n >= 0.
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 32 - 16*sqrt(e) + 8*gamma - 8*Ei(1/2) - 8*log(2), where Ei(x) is the exponential integral and gamma is Euler's constant (A001620).
Sum_{n>=0} (-1)^n/a(n) = 24*gamma - 16/sqrt(e) - 24*Ei(-1/2) - 24*log(2). (End)
Showing 1-10 of 10 results.