A136394
Triangle read by rows: T(n,k) is the number of permutations of an n-set having k cycles of size > 1 (0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 1, 20, 3, 1, 84, 35, 1, 409, 295, 15, 1, 2365, 2359, 315, 1, 16064, 19670, 4480, 105, 1, 125664, 177078, 56672, 3465, 1, 1112073, 1738326, 703430, 74025, 945, 1, 10976173, 18607446, 8941790, 1346345, 45045, 1, 119481284, 216400569, 118685336
Offset: 0
Triangle (n,k) begins:
1;
1;
1, 1;
1, 5;
1, 20, 3;
1, 84, 35;
1, 409, 295, 15;
1, 2365, 2359, 315;
...
- Alois P. Heinz, Rows n = 0..200, flattened
- Jean-Luc Baril and Sergey Kirgizov, Transformation à la Foata for special kinds of descents and excedances, arXiv:2101.01928 [math.CO], 2021. See Theorem 2. p. 5.
- FindStat - Combinatorial Statistic Finder, The number of nontrivial cycles of a permutation pi in its cycle decomposition
- Bin Han, Jianxi Mao, and Jiang Zeng, Equidistributions around special kinds of descents and excedances, arXiv:2103.13092 [math.CO], 2021, see page 2.
Columns k=0-10 give:
A000012,
A006231,
A289950,
A289951,
A289952,
A289953,
A289954,
A289955,
A289956,
A289957,
A289958.
-
egf:= proc(k::nonnegint) option remember; x-> exp(x)* ((-x-ln(1-x))^k)/k! end; T:= (n,k)-> coeff(series(egf(k)(x), x=0, n+1), x, n) *n!; seq(seq(T(n,k), k=0..n/2), n=0..30); # Alois P. Heinz, Aug 14 2008
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
`if`(i>1, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 25 2016
# third Maple program:
T:= proc(n, k) option remember; `if`(k<0 or k>2*n, 0,
`if`(n=0, 1, add(T(n-i, k-`if`(i>1, 1, 0))*
mul(n-j, j=1..i-1), i=1..n)))
end:
seq(seq(T(n,k), k=0..n/2), n=0..15); # Alois P. Heinz, Jul 16 2017
-
max = 12; egf = Exp[x*(1-y)]/(1-x)^y; s = Series[egf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; t[0, 0] = t[1, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)
A051578
a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0
Cf.
A052587 (essentially the same).
-
List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
-
[2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
-
a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 29 2019
seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *)
Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
-
vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
-
apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
-
[2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A051580
a(n) = (2*n+6)!!/6!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 8, 80, 960, 13440, 215040, 3870720, 77414400, 1703116800, 40874803200, 1062744883200, 29756856729600, 892705701888000, 28566582460416000, 971263803654144000, 34965496931549184000, 1328688883398868992000
Offset: 0
-
List([0..20], n-> Product([1..n], j-> 2*j+6) ); # G. C. Greubel, Nov 11 2019
-
[1] cat [(&*[2*j+6: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(2*j+6, j=1..n), n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^n*Pochhammer[4, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
Table[(2n+6)!!/6!!,{n,0,20}] (* Harvey P. Dale, Mar 03 2022 *)
-
vector(20, n, prod(j=1,n-1, 2*j+6) ) \\ G. C. Greubel, Nov 11 2019
-
[product( (2*j+6) for j in (1..n)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A051579
a(n) = (2*n+5)!!/5!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 7, 63, 693, 9009, 135135, 2297295, 43648605, 916620705, 21082276215, 527056905375, 14230536445125, 412685556908625, 12793252264167375, 422177324717523375, 14776206365113318125, 546719635509192770625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+7) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+7: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
df:=doublefactorial; seq(df(2*n+5)/df(5), n = 0..20); # G. C. Greubel, Nov 12 2019
-
Table[2^n*Pochhammer[7/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=1,n-1, 2*j+5) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+7) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A051582
a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
Offset: 0
-
F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
-
F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
-
seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
-
(2Range[0,20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *)
Table[2^n*Pochhammer[5, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
-
f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A051581
a(n) = (2*n+7)!!/7!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 9, 99, 1287, 19305, 328185, 6235515, 130945815, 3011753745, 75293843625, 2032933777875, 58955079558375, 1827607466309625, 60311046388217625, 2110886623587616875, 78102805072741824375, 3046009397836931150625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+9) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+9: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
df:=doublefactorial; seq(df(2*n+7)/df(7), n = 0..20); # G. C. Greubel, Nov 12 2019
-
Table[2^n*Pochhammer[9/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=1,n-1, 2*j+7) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+9) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A051583
a(n) = (2*n+9)!!/9!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 11, 143, 2145, 36465, 692835, 14549535, 334639305, 8365982625, 225881530875, 6550564395375, 203067496256625, 6701227376468625, 234542958176401875, 8678089452526869375, 338445488648547905625, 13876265034590464130625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+11) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+11: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
seq(2^n*pochhammer(11/2,n), n = 0..20); # G. C. Greubel, Nov 12 2019
-
(2*Range[0,20]+9)!!/945 (* Harvey P. Dale, Apr 10 2019 *)
Table[2^n*Pochhammer[11/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=0,n-2, 2*j+11) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+11) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A000906
Exponential generating function: 2*(1+3*x)/(1-2*x)^(7/2).
Original entry on oeis.org
2, 20, 210, 2520, 34650, 540540, 9459450, 183783600, 3928374450, 91662070500, 2319050383650, 63246828645000, 1849969737866250, 57775977967207500, 1918987839625106250, 67548371954803740000, 2511955082069264081250
Offset: 0
G.f. = 2 + 20*x + 210*x^2 + 2520*x^3 + 34650*x^4 + 540540*x^5 + ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
- C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- H. W. Gould, Harris Kwong, Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), #15.9.6.
- C. Jordan, On Stirling's Numbers, Tohoku Math. J., 37 (1933), 254-278.
Negative coefficient of x of polynomials in
A098503.
-
[Factorial(2*n+3)/(6*Factorial(n)*2^(n-1)): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[(2 n + 5)!!/3 - (2 n + 3)!!, {n, 0, 20}] (* Vincenzo Librandi, Apr 11 2012 *)
-
a(n)=(2*n+6)!/(n+3)!/2^(n+3)/3-(2*n+4)!/(n+2)!/2^(n+2)
A112292
An invertible triangle of ratios of double factorials.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 15, 15, 5, 1, 105, 105, 35, 7, 1, 945, 945, 315, 63, 9, 1, 10395, 10395, 3465, 693, 99, 11, 1, 135135, 135135, 45045, 9009, 1287, 143, 13, 1, 2027025, 2027025, 675675, 135135, 19305, 2145, 195, 15, 1, 34459425, 34459425, 11486475, 2297295, 328185, 36465, 3315, 255, 17, 1
Offset: 0
Triangle begins
1;
1, 1;
3, 3, 1;
15, 15, 5, 1;
105, 105, 35, 7, 1;
945, 945, 315, 63, 9, 1;
10395, 10395, 3465,693, 99, 11, 1;
Inverse is A112295, which begins
1;
-1, 1;
0, -3, 1;
0, 0, -5, 1;
0, 0, 0, -7, 1;
0, 0, 0, 0, -9, 1;
Similar results arise for higher factorials.
-
T[n_, k_] := If[k <= n, (2n-1)!!/(2k-1)!!, 0];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
A288950
Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o-o
| | | |
o o-o-o o-o o.
For n=0 the a(0)=1 solution is L.
For n=1 we have a(1)=0 because we need nodes on level 0 and level 1.
For n=2 the a(2)=1 solution is
L-o
|
o
and the pointers of the node on level 1 both point to the leaf.
For n=3 the a(3)=2 solutions have the structure
L-o
|
o-o
where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
Cf.
A000032,
A000246,
A001879,
A051577,
A177145,
A213527,
A288950,
A288952,
A288953,
A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
-
terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)
Showing 1-10 of 18 results.
Comments