A051577
a(n) = (2*n + 3)!!/3 = A001147(n+2)/3.
Original entry on oeis.org
1, 5, 35, 315, 3465, 45045, 675675, 11486475, 218243025, 4583103525, 105411381075, 2635284526875, 71152682225625, 2063427784543125, 63966261320836875, 2110886623587616875, 73881031825566590625, 2733598177545963853125, 106610328924292590271875
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..250
- H. W. Gould, Harris Kwong, and Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), Article 15.9.6.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017, p. 10.
- Eric Weisstein's World of Mathematics, Double Factorial.
- Wikipedia, Double factorial.
-
F:=Factorial;; List([0..25], n-> F(2*n+4)/(12*2^n*F(n+2)) ); # G. C. Greubel, Nov 12 2019
-
F:=Factorial; [F(2*n+4)/(12*2^n*F(n+2)): n in [0..25]]; // G. C. Greubel, Nov 12 2019
-
seq( doublefactorial(2*n+3)/3,n=0..10) ; # R. J. Mathar, Sep 29 2013
-
Table[(2*n + 3)!!/3!!, {n, 0, 25}] (* G. C. Greubel, Jan 22 2017 *)
a[n_] := Sum[(-1)^k*Binomial[2*n + 1, n + k]*StirlingS1[n + k + 1 ,k], {k , 1, n + 1}]; Flatten[Table[a[n], {n, 0, 18}]] (* Detlef Meya, Jan 17 2024 *)
-
vector(26, n, (2*n+2)!/(6*2^n*(n+1)!) ) \\ G. C. Greubel, Nov 12 2019
-
f=factorial; [f(2*n+4)/(12*2^n*f(n+2)) for n in (0..25)] # G. C. Greubel, Nov 12 2019
A051578
a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0
Cf.
A052587 (essentially the same).
-
List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
-
[2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
-
a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 29 2019
seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *)
Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
-
vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
-
apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
-
[2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A051580
a(n) = (2*n+6)!!/6!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 8, 80, 960, 13440, 215040, 3870720, 77414400, 1703116800, 40874803200, 1062744883200, 29756856729600, 892705701888000, 28566582460416000, 971263803654144000, 34965496931549184000, 1328688883398868992000
Offset: 0
-
List([0..20], n-> Product([1..n], j-> 2*j+6) ); # G. C. Greubel, Nov 11 2019
-
[1] cat [(&*[2*j+6: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(2*j+6, j=1..n), n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^n*Pochhammer[4, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
Table[(2n+6)!!/6!!,{n,0,20}] (* Harvey P. Dale, Mar 03 2022 *)
-
vector(20, n, prod(j=1,n-1, 2*j+6) ) \\ G. C. Greubel, Nov 11 2019
-
[product( (2*j+6) for j in (1..n)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
A051582
a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
Offset: 0
-
F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
-
F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
-
seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
-
(2Range[0,20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *)
Table[2^n*Pochhammer[5, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
-
f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A051581
a(n) = (2*n+7)!!/7!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 9, 99, 1287, 19305, 328185, 6235515, 130945815, 3011753745, 75293843625, 2032933777875, 58955079558375, 1827607466309625, 60311046388217625, 2110886623587616875, 78102805072741824375, 3046009397836931150625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+9) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+9: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
df:=doublefactorial; seq(df(2*n+7)/df(7), n = 0..20); # G. C. Greubel, Nov 12 2019
-
Table[2^n*Pochhammer[9/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=1,n-1, 2*j+7) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+9) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A051583
a(n) = (2*n+9)!!/9!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 11, 143, 2145, 36465, 692835, 14549535, 334639305, 8365982625, 225881530875, 6550564395375, 203067496256625, 6701227376468625, 234542958176401875, 8678089452526869375, 338445488648547905625, 13876265034590464130625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+11) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+11: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
seq(2^n*pochhammer(11/2,n), n = 0..20); # G. C. Greubel, Nov 12 2019
-
(2*Range[0,20]+9)!!/945 (* Harvey P. Dale, Apr 10 2019 *)
Table[2^n*Pochhammer[11/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=0,n-2, 2*j+11) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+11) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A112292
An invertible triangle of ratios of double factorials.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 15, 15, 5, 1, 105, 105, 35, 7, 1, 945, 945, 315, 63, 9, 1, 10395, 10395, 3465, 693, 99, 11, 1, 135135, 135135, 45045, 9009, 1287, 143, 13, 1, 2027025, 2027025, 675675, 135135, 19305, 2145, 195, 15, 1, 34459425, 34459425, 11486475, 2297295, 328185, 36465, 3315, 255, 17, 1
Offset: 0
Triangle begins
1;
1, 1;
3, 3, 1;
15, 15, 5, 1;
105, 105, 35, 7, 1;
945, 945, 315, 63, 9, 1;
10395, 10395, 3465,693, 99, 11, 1;
Inverse is A112295, which begins
1;
-1, 1;
0, -3, 1;
0, 0, -5, 1;
0, 0, 0, -7, 1;
0, 0, 0, 0, -9, 1;
Similar results arise for higher factorials.
-
T[n_, k_] := If[k <= n, (2n-1)!!/(2k-1)!!, 0];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
A370419
A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 3, 8, 15, 24, 35, 48, 63, 80, ...
[3] 0, 15, 48, 105, 192, 315, 480, 693, 960, ...
[4] 0, 105, 384, 945, 1920, 3465, 5760, 9009, 13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 3, 2, 1;
[4] 0, 15, 8, 3, 1;
[5] 0, 105, 48, 15, 4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From _Werner Schulte_, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
/ 1 \ / 1 1 1 1 1 ... \ / 1 1 1 1 1 ... \
| 0 1 | | 1 2 3 4 ... | | 0 1 2 3 4 ... |
| 0 3 2 | * | 1 3 6 ... | = | 0 3 8 15 24 ... |
| 0 15 18 6 | | 1 4 ... | | 0 15 48 105 192 ... |
| 0 105 174 108 24 | | 1 ... | | 0 105 384 945 1920 ... |
| . . . | | . . . | | . . . |. (End)
-
A := (n, k) -> 2^n*pochhammer(k/2, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..8);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the comment of Werner Schulte about the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371025(n - 1, k - 1)):
U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
MatrixMatrixMultiply(L, Transpose(U)); # Peter Luschny, Mar 08 2024
-
A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
-
def A(n, k): return 2**n * rising_factorial(k/2, n)
for n in range(6): print([A(n, k) for k in range(9)])
A153272
Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 4, read by rows.
Original entry on oeis.org
7, 7, 56, 7, 63, 693, 7, 70, 910, 14560, 7, 77, 1155, 21945, 504735, 7, 84, 1428, 31416, 848232, 27143424, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175
Offset: 0
Triangle begins as:
7;
7, 56;
7, 63, 693;
7, 70, 910, 14560;
7, 77, 1155, 21945, 504735;
7, 84, 1428, 31416, 848232, 27143424;
7, 91, 1729, 43225, 1339975, 49579075, 2131900225;
-
m:=4;
function T(n,k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
-
m:=4; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
-
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = my(m=4); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
-
def T(n, k):
m=4
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
Showing 1-9 of 9 results.
Comments