A286724 Triangle read by rows. A generalization of unsigned Lah numbers, called L[2,1].
1, 2, 1, 8, 8, 1, 48, 72, 18, 1, 384, 768, 288, 32, 1, 3840, 9600, 4800, 800, 50, 1, 46080, 138240, 86400, 19200, 1800, 72, 1, 645120, 2257920, 1693440, 470400, 58800, 3528, 98, 1, 10321920, 41287680, 36126720, 12042240, 1881600, 150528, 6272, 128, 1, 185794560, 836075520, 836075520, 325140480, 60963840, 6096384, 338688, 10368, 162, 1, 3715891200, 18579456000, 20901888000, 9289728000, 2032128000, 243855360, 16934400, 691200, 16200, 200, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 0: 1 1: 2 1 2: 8 8 1 3: 48 72 18 1 4: 384 768 288 32 1 5: 3840 9600 4800 800 50 1 6: 46080 138240 86400 19200 1800 72 1 7: 645120 2257920 1693440 470400 58800 3528 98 1 8: 10321920 41287680 36126720 12042240 1881600 150528 6272 128 1 9: 185794560 836075520 836075520 325140480 60963840 6096384 338688 10368 162 1 ... From _Wolfdieter Lang_, Aug 12 2017: (Start) Recurrence for column elements with m >= 1, and input column m = 0: T(3, 2) = (3/2)*T(2, 1) + 2*3*T(2, 2) = (3/2)*8 + 6 = 18. Four term recurrence: T(3, 2) = T(2, 1) + 2*5*T(2, 2) - 4*2^2*T(1, 2) = 8 + 10 + 0 = 18. Meixner type identity, n=2: 2*R(1, x) = (D_x - 2*(D_x)^2)*R(2, x), 2*(2 + x) = (8 + 2*x) - 2*2. Sheffer recurrence: R(2, x) = (2 + x)*(2 + x) + 4*(1 + x)*1 + 0 = 8 + 8*x + x^2. Boas-Buck recurrence for column m = 2 and n = 4: T(4, 2) = (2*4!*3/2)*(1*T(3, 2)/3! + 2*T(2, 2)/2!) = 4!*3*(18/3! + 1) = 288. (End) Diagonal sequence D = 1: o.g.f. 2*1!*(1 + 1*x)/(1- x)^3 generating {2*(binomial(m+1, m))^2}_{m >= 0} = {2, 8, 18, 32, ...}. - _Wolfdieter Lang_, Sep 14 2017
References
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
Links
- Peter Bala, The white diamond product of power series
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
Crossrefs
Programs
-
Maple
T := (n, k) -> ifelse(n < k, 0, ifelse(k = 0, n!*2^n, (n/k)*T(n-1, k-1) + 2*n*T(n-1, k))): seq(seq(T(n, k), k = 0..n), n = 0..10); # Peter Luschny, Mar 10 2025
-
Mathematica
T[ n_, k_] := Coefficient[ Integrate[ Exp[-x^2 - y x] HermiteH[n, x]^2, {x, -Infinity, Infinity}] / (Sqrt[Pi] Exp[y^2 / 4]), y, 2 k]; (* Michael Somos, Sep 27 2017 *)
-
SageMath
# Using the function A021009_triangle, displays as a matrix. Following the observation of Ali Pourzand. print(A021009_triangle(9)^2) # Peter Luschny, Mar 10 2025
Formula
Three term recurrence for column elements with m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 2*n*T(n-1, m) with T(n, m) = 0 for n < m and the column m = 0 is T(n, 0) = (2*n)!! = n*2^n = A000165(n). (From the a- and z-sequences {1, 2, repeat(0)} and {2, repeat(0)}, respectively.)
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(2*n-1)*T(n-1, m) - 4*(n-1)^2*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
E.g.f. of row polynomials R(n, x) = R[2,1](n, x) (i.e., e.g.f. of the triangle): (1/(1-2*t))*exp(x*t/(1-2*t)).
E.g.f. of column m sequences: (t^m/(1-2*t)^(m+1))/m!, m >= 0.
Meixner type identity: Sum_{k=0..n-1} (-1)^k*2^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx.
Sheffer recurrence: R(n, x) = [(2 + x)*1 + 4*(1 + x)*D_x + 4*x*(D_x)^2]*R(n-1, x), n >= 1, and R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment above): T(n, m) = (2*n!*(1 + m)/(n-1))*Sum_{p=0..n-1-m} 2^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, and input T(m, m) = 1. - Wolfdieter Lang, Aug 12 2017
Explicit form (from the diagonal sequences with the o.g.f.s given as a comment above): T(n, m) = 2^(n-m)*(n-m)!*(binomial(n, n-m))^2 for n >= m >= 0. - Wolfdieter Lang, Sep 23 2017
Let R(n,x) denote the n-th row polynomial. Then x^n*R(n,x) = x^n o x^n, where o denotes the deformed Hadamard product of power series defined in Bala, Section 3.1. - Peter Bala, Jan 18 2018
Comments