cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051150 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -5, 1, 50, -15, 1, -750, 275, -30, 1, 15000, -6250, 875, -50, 1, -375000, 171250, -28125, 2125, -75, 1, 11250000, -5512500, 1015000, -91875, 4375, -105, 1, -393750000, 204187500, -41037500, 4230625
Offset: 1

Views

Author

Keywords

Comments

a(n,m) = R_n^m(a=0, b=5) in the notation of the given 1961 and 1962 references.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 5*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle A008275 with diagonal d >= 0 (main diagonal d = 0) scaled with 5^d.

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
        1;
       -5,      1;
       50,    -15,      1;
     -750,    275,    -30,   1;
    15000,  -6250,    875, -50,    1;
  -375000, 171250, -28125, 2125, -75, 1;
  ...
3rd row o.g.f.: E(3,x) = 50*x - 15*x^2 + x^3.
		

Crossrefs

First (m=1) column sequence: A052562(n-1).
Row sums (signed triangle): A008546(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A008548(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3), A051142 (b=4).

Formula

a(n, m) = a(n-1, m-1) - 5*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) := 0 for n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 5*x)/5)^m/m!.
a(n, m) = S1(n, m)*5^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).