A051150 Generalized Stirling number triangle of first kind.
1, -5, 1, 50, -15, 1, -750, 275, -30, 1, 15000, -6250, 875, -50, 1, -375000, 171250, -28125, 2125, -75, 1, 11250000, -5512500, 1015000, -91875, 4375, -105, 1, -393750000, 204187500, -41037500, 4230625
Offset: 1
Examples
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins: 1; -5, 1; 50, -15, 1; -750, 275, -30, 1; 15000, -6250, 875, -50, 1; -375000, 171250, -28125, 2125, -75, 1; ... 3rd row o.g.f.: E(3,x) = 50*x - 15*x^2 + x^3.
Links
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
Crossrefs
Formula
a(n, m) = a(n-1, m-1) - 5*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) := 0 for n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 5*x)/5)^m/m!.
a(n, m) = S1(n, m)*5^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).
Comments