A386260 Maximum exponent in the prime factorization of the exponent of the highest power of 2 dividing 2*n.
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{v = IntegerExponent[n, 2] + 2}, If[v == 1, 0, Max[FactorInteger[v][[;;, 2]]]]]; Array[a, 100]
-
PARI
a(n) = my(v = valuation(4*n, 2)); if(v == 1, 0, vecmax(factor(v)[,2]));
Formula
A051903(A001511(2*n-1)) = 0 for all n >= 1, and therefore the odd-indexed terms of A051903(A001511(n)) are omitted.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} A051903(k)/2^(k-1) = 1.14512095789925078232... . If the odd-indexed zero terms had not been omitted, the asymptotic mean would be half this value, 0.57256047894962539116... .
Comments