cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051201 Sum of elements of the set { [ n/k ] : 1 <= k <= n }.

Original entry on oeis.org

1, 3, 4, 7, 8, 12, 13, 15, 19, 21, 22, 28, 29, 31, 33, 39, 40, 43, 44, 51, 53, 55, 56, 60, 66, 68, 70, 73, 74, 83, 84, 87, 89, 91, 93, 103, 104, 106, 108, 112, 113, 123, 124, 127, 130, 132, 133, 138, 146, 149, 151, 154, 155, 159, 161, 172, 174, 176, 177, 183, 184, 186
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(add(j, j in {seq(floor(n/i), i=1..n)}), n=1..100); # Ridouane Oudra, Nov 02 2024
  • Mathematica
    a[n_] := With[{m = Quotient[Floor@Sqrt[4n+1]-1, 2]}, m(m+1)/2 + Sum[ Quotient[n, k], {k, 1, Quotient[n, m+1]}]];
    Array[a, 100] (* Jean-François Alcover, Nov 20 2020, after Max Alekseyev *)
  • PARI
    { a(n) = m=(sqrtint(4*n+1)-1)\2; m*(m+1)/2 + sum(k=1,n\(m+1),n\k) } \\ Max Alekseyev, Feb 12 2012
    
  • Python
    from math import isqrt
    def A051201(n): return ((m:=isqrt((n<<2)+1)+1>>1)*(m-1)>>1)+sum(n//k for k in range(1,n//m+1)) # Chai Wah Wu, Oct 31 2023

Formula

a(n) = m*(m+1)/2 + Sum_{k=1..floor(n/(m+1))} floor(n/k), where m is the largest number such that m*(m+1) <= n, i.e., m=floor((sqrt(4*n+1)-1)/2 ). - Max Alekseyev, Feb 12 2012
From Ridouane Oudra, Nov 02 2024: (Start)
a(n) = r*(r-1)/2 + Sum_{k=1..floor(sqrt(n))} floor(n/k), where r = floor(sqrt(n+1) + 1/2).
a(n) = (1/4)*t*(t-1) + (1/2)*Sum_{k=1..n} floor(n/k), where t = floor(sqrt(4*n + 1)).
a(n) = (1/4)*A000267(n)*A055086(n) + (1/2)*A006218(n). (End)