A051225 Numbers m such that the Bernoulli number B_{2*m} has denominator 30.
2, 4, 34, 38, 62, 76, 94, 118, 122, 124, 142, 188, 202, 206, 214, 218, 236, 244, 274, 298, 302, 314, 334, 362, 394, 412, 422, 436, 446, 454, 458, 482, 514, 526, 538, 542, 566, 578, 604, 622, 626, 628, 634, 662, 668, 674, 694, 698, 706, 722, 724, 734, 758
Offset: 1
Examples
The numbers m = 2, 4, 34 are in the list because B_4 = B_8 = -1/30 and B_68 = -78773130858718728141909149208474606244347001/30. - _Petros Hadjicostas_, Jun 06 2020
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
Links
Programs
-
Mathematica
Cases[Range[760], n_ /; Denominator[BernoulliB[2*n]] == 30] (* Jean-François Alcover, Mar 23 2011 *)
-
PARI
is(n)=fordiv(n,d, if(isprime(2*d+1) && d>2, return(0))); n%2==0 \\ Charles R Greathouse IV, Jun 21 2017
-
Perl
@p=(2,3,5); $p=5; for($n=4; $n<=1516; $n+=4){while($p<$n+1){$p+=2; next if grep$p%$==0,@p; push@p,$p; push@c,$p-1; }print$n/2,","if!grep$n%$==0,@c; }print"\n"
Formula
a(n) = A051226(n)/2. - Petros Hadjicostas, Jun 06 2020
Extensions
More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020
Comments