A051228 Numbers m such that the Bernoulli number B_m has denominator 42.
6, 114, 186, 258, 354, 402, 426, 474, 582, 654, 762, 834, 894, 942, 978, 1002, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1614, 1842, 1902, 2022, 2094, 2118, 2166, 2274, 2298, 2334, 2406, 2454, 2526, 2598, 2634, 2694, 2742, 2778, 2874, 2922, 2994, 3126
Offset: 1
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
Links
Programs
-
Mathematica
2*Select[Range[2000], Denominator[BernoulliB[2#]] == 42 &](* Jean-François Alcover, Nov 25 2011 *) Position[BernoulliB[Range[3200]],?(Denominator[#]==42&)]//Flatten (* _Harvey P. Dale, Jul 02 2018 *)
-
PARI
is(n)=denominator(bernfrac(n))==42 \\ Charles R Greathouse IV, Feb 07 2017
-
Perl
@p=(2,3,5,7); @c=(4); $p=7; for($n=6; $n<=3126; $n+=6){while($p<$n+1){$p+=2; next if grep$p%$==0,@p; push@p,$p; push@c,$p-1; }print"$n,"if!grep$n%$==0,@c; }print"\n"
Formula
a(n) = 2*A051227(n). - Petros Hadjicostas, Jun 06 2020
Extensions
More terms and Perl program from Hugo van der Sanden
Name edited by Petros Hadjicostas, Jun 06 2020
Comments