cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000662 Number of relations with 3 arguments on n nodes.

Original entry on oeis.org

2, 136, 22377984, 768614354122719232, 354460798875983863749270670915141632, 146267071761884981524915186989628577728537526896649216991428608
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.31)
  • W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Python
    from itertools import product
    from math import factorial, prod, lcm
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000662(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2,...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^Sum_{i, j, k>=1} (i*j*k*s_i*s_j*s_k/lcm(i, j, k)). - Christian G. Bower, Jan 06 2004

A001377 Number of relations with 4 arguments on n nodes.

Original entry on oeis.org

2, 32896, 402975273205975947935744, 4824670384888174809315457708695329515706856139873561594988392833332671414272
Offset: 1

Views

Author

Keywords

References

  • W. Oberschelp, "Strukturzahlen in endlichen Relationssystemen", in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Python
    from itertools import product
    from math import factorial, prod, lcm
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A001377(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 02 2024

Extensions

More terms from Vladeta Jovovic
Showing 1-2 of 2 results.