A051278 Numbers n such that n = k/d(k) has a unique solution, where d(k) = number of divisors of k.
4, 6, 9, 10, 12, 14, 15, 20, 21, 22, 26, 32, 33, 34, 35, 36, 38, 39, 42, 46, 50, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 100, 102, 106, 108, 110, 111, 114, 115, 118, 119, 122, 123, 126, 128, 129, 130
Offset: 1
Examples
36 is the unique number k with k/d(k)=4.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Haskell
a051278 n = a051278_list !! (n-1) a051278_list = filter ((== 1) . a051521) [1..] -- Reinhard Zumkeller, Dec 28 2011
-
Maple
with(numtheory): A051278 := proc(n) local ct,k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=1)then return n: else return NULL: fi: end: seq(A051278(n),n=1..40);
-
Mathematica
cnt[n_] := Count[Table[n == k/DivisorSigma[0, k], {k, 1, 4*n^2}], True]; Select[Range[130], cnt[#] == 1 &] (* Jean-François Alcover, Oct 22 2012 *)
Comments