cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051278 Numbers n such that n = k/d(k) has a unique solution, where d(k) = number of divisors of k.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 20, 21, 22, 26, 32, 33, 34, 35, 36, 38, 39, 42, 46, 50, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 100, 102, 106, 108, 110, 111, 114, 115, 118, 119, 122, 123, 126, 128, 129, 130
Offset: 1

Views

Author

Keywords

Comments

Because d(k) <= 2*sqrt(k), it suffices to check k from 1 to 4*n^2. - Nathaniel Johnston, May 04 2011
A051521(a(n)) = 1. - Reinhard Zumkeller, Dec 28 2011

Examples

			36 is the unique number k with k/d(k)=4.
		

Crossrefs

Programs

  • Haskell
    a051278 n = a051278_list !! (n-1)
    a051278_list = filter ((== 1) . a051521) [1..]
    -- Reinhard Zumkeller, Dec 28 2011
  • Maple
    with(numtheory): A051278 := proc(n) local ct,k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=1)then return n: else return NULL: fi: end: seq(A051278(n),n=1..40);
  • Mathematica
    cnt[n_] := Count[Table[n == k/DivisorSigma[0, k], {k, 1, 4*n^2}], True]; Select[Range[130], cnt[#] == 1 &]  (* Jean-François Alcover, Oct 22 2012 *)