A051279 Numbers n such that n = k/d(k) has exactly 2 solutions, where d(k) = number of divisors of k.
1, 2, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 28, 29, 31, 37, 41, 43, 44, 47, 48, 52, 53, 56, 59, 61, 67, 68, 71, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 97, 101, 103, 104, 107, 109, 113, 116, 120, 124, 127, 131, 132, 136, 137, 139, 148, 149, 151, 152, 154, 156
Offset: 1
Examples
There are exactly 2 numbers k, 40 and 60, with k/d(k)=5.
Links
- Nathaniel Johnston and T. D. Noe, Table of n, a(n) for n = 1..1000 (first 150 terms from Nathaniel Johnston)
Programs
-
Haskell
a051279 n = a051279_list !! (n-1) a051279_list = filter ((== 2) . a051521) [1..] -- Reinhard Zumkeller, Dec 28 2011
-
Maple
with(numtheory): A051279 := proc(n) local ct, k: ct:=0: for k from 1 to 4*n^2 do if(n=k/tau(k))then ct:=ct+1: fi: od: if(ct=2)then return n: else return NULL: fi: end: seq(A051279(n), n=1..40); # Nathaniel Johnston, May 04 2011
-
Mathematica
A051279 = Reap[Do[ct = 0; For[k = 1, k <= 4*n^2, k++, If[n == k/DivisorSigma[0, k], ct++]]; If[ct == 2, Print[n]; Sow[n]], {n, 1, 160}]][[2, 1]](* Jean-François Alcover, Apr 16 2012, after Nathaniel Johnston *)
Comments