cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072651 Table by antidiagonals used in calculating integer solutions to b^c=c^d with b,c,d>0.

Original entry on oeis.org

1, 1, 4, 1, 16, 27, 1, 0, 0, 16, 1, 65536, 7625597484987, 256, 3125, 1, 0, 0, 0, 0, 46656, 1, 0, 0, 4294967296, 0, 10314424798490535546171949056, 823543, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Jun 28 2002

Keywords

Comments

There are also trivial values involving 0 to give 1; for any b and c: b^0=0^0 and 1^c=c^0. For b=p prime, the solutions occur when k is a power of p, say p^x and so c=p^(p^x), d=p^(p^(p^x)-k) and the value is p^(p^(p^x))). For p=2 this seems to give all but the first two terms of A051285.

Examples

			Rows start: 1, 1, 1, ...; 4, 16, 0, 65536, 0, 0, 0, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 0, ...; 27, 0, 7625597484987, 0, 0, ...; 16, 256, 0, 4294967296, 0, ... etc. with the nonzero values corresponding to 1^1=1^1, 1^1=1^2, 1^1=1^3; 2^2=2^2, 2^4=4^2, 2^16=16^4, 2^256=256^32; 3^3=3^3, 3^27=27^9; 4^2=2^4, 4^4=4^4, 4^16=16^8; etc. For b=10^9: r=10 and m=9 so there solutions with c=10^k and d=9*10^k/k providing k is in A070023, i.e. if 1/k has period 0 or 1 in base 10.
		

Crossrefs

Formula

T(n, k)=n^(A052410(n)^k) if A052409(n)*A052410(n)^k/k is an integer [and with T(1, k)=1] but otherwise T(n, k)=0 if A052409(n)*A052410(n)^k/k is not an integer. b=n=r^m where r=A052410(n) is the smallest root of n and m=A052409(n) is the power of r that n is; c=r^k; and d=m*r^k/k providing this is an integer [while if n=1 then b=1, c=1 and d=k]. In effect, there is a solution if the largest divisor of k which is coprime to all powers of r is also a divisor of m.

A264933 a(0)=0; a(1)=1; a(2)=2; a(n) = a(n-1)^a(n-2)^a(n-3).

Original entry on oeis.org

0, 1, 2, 2, 4, 256, 340282366920938463463374607431768211456
Offset: 0

Views

Author

Natan Arie Consigli, Dec 17 2015

Keywords

Examples

			a(3) = a(2)^a(1)^a(0) = 2;
a(4) = a(3)^a(2)^a(1) = 2^2^1 = 4;
a(5) = a(4)^a(3)^a(2) = 4^2^2 = 256;
a(6) = a(5)^a(4)^a(3) = 256^4^2 = 340282366920938463463374607431768211456.
		

Crossrefs

Cf. A051285.

Programs

  • Magma
    I:=[0, 1, 2]; [n le 2 select I[n] else Self(n-1)^Self(n-2)^Self(n-3): n in [0..6]];
    
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[2]==2, a[n]==a[n-1]^a[n-2]^a[n-3]}, a, {n, 6}]
  • PARI
    a(n) = if(n<3, n, a(n-1)^a(n-2)^a(n-3));

A267218 a(n) is the a(n-1)-st a(n-2)-dimensional orthoplex number, starting with the terms 1, 2.

Original entry on oeis.org

1, 2, 2, 4, 16, 22016
Offset: 1

Views

Author

Robin Powell, Jan 18 2016

Keywords

Examples

			16 is the 4th 2-orthoplex number = A000290(4).
22016 is the 16th 4-orthoplex number = A014820(16).
The next term will be the 22016th 16-orthoplex number.
		

Crossrefs

A271938 a(1) = 1, a(2) = 3, a(n) = a(n-1)^a(n-2).

Original entry on oeis.org

1, 3, 3, 27, 19683, 87189642485960958202911070585860771696964072404731750085525219437990967093723439943475549906831683116791055225665627
Offset: 1

Views

Author

Natan Arie Consigli, Apr 17 2016

Keywords

Crossrefs

Cf. A264932 with a(n-1)^^a(n-2) or a(n-1)^a(n-2)^a(n-2);
Cf. A051285 (with a(2) = 2).

Programs

  • Mathematica
    a[1] = 1; a[2] = 3; a[n_] := a[n] = a[n - 1]^a[n - 2]; Array[a, {6}] (* Michael De Vlieger, Apr 17 2016 *)
    nxt[{a_,b_}]:={b,b^a}; NestList[nxt,{1,3},5][[;;,1]] (* Harvey P. Dale, Aug 02 2025 *)
Showing 1-4 of 4 results.