A051379 Generalized Stirling number triangle of first kind.
1, -8, 1, 72, -17, 1, -720, 242, -27, 1, 7920, -3382, 539, -38, 1, -95040, 48504, -9850, 995, -50, 1, 1235520, -725592, 176554, -22785, 1645, -63, 1, -17297280, 11393808, -3197348, 495544, -45815, 2527, -77, 1, 259459200, -188204400, 59354028, -10630508, 1182769, -83720, 3682, -92, 1
Offset: 0
Examples
{1}; {-8,1}; {72,-17,1}; {-720,242,-27,1}; ... s(2,x)=72-17*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
Crossrefs
Programs
-
Haskell
a051379 n k = a051379_tabl !! n !! k a051379_row n = a051379_tabl !! n a051379_tabl = map fst $ iterate (\(row, i) -> (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 8) -- Reinhard Zumkeller, Mar 12 2014
-
Mathematica
a[n_, m_] := Pochhammer[m + 1, n - m] SeriesCoefficient[Log[1 + x]^m/(1 + x)^8, {x, 0, n}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)
Formula
a(n, m)= a(n-1, m-1) - (n+7)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^8).
Triangle (signed) = [ -8, -1, -9, -2, -10, -3, -11, -4, -12, ...] DELTA A000035; triangle (unsigned) = [8, 1, 9, 2, 10, 3, 11, 4, 12, 5, ...] DELTA A000035; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,8), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
Extensions
Typo fixed in data by Reinhard Zumkeller, Mar 12 2014
Comments