A051516 Number of triangles with perimeter n having integer sides and area.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 3, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 1, 0, 1, 0, 2, 0, 5, 0, 0, 0, 1, 0, 1, 0, 4, 0, 0, 0, 8, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 5, 0, 6, 0, 5, 0, 0, 0, 2, 0, 0, 0, 12, 0, 1, 0
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Seiichi Manyama)
- Eric Weisstein's World of Mathematics, Heronian Triangle.
Programs
-
Mathematica
Table[Sum[Sum[(1 - Ceiling[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]] + Floor[Sqrt[(n/2) (n/2 - i) (n/2 - k) (i + k - n/2)]])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 11 2019 *)
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - ceiling(m) + floor(m)) * sign(floor((i+k)/(n-i-k+1))), where m = sqrt((n/2)*(n/2-i)*(n/2-k)*(i+k-n/2)). - Wesley Ivan Hurt, May 11 2019
Comments