A051521 Number of ways to represent n as k/d(k), where d(k) = A000005(k) is the number of divisors of k.
2, 2, 3, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 3, 1, 0, 2, 2, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 0, 1, 2, 2, 3, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1
Offset: 1
Keywords
Examples
There are a(1) = 2 numbers k for which k/d(k) = 1, namely k = 1 and k = 2. There are a(2) = 2 numbers k for which k/d(k) = 2, namely k = 8 and k = 12. There are a(3) = 3 numbers k for which k/d(k) = 3, namely k = 9, 18 and 24.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a051521 n = length [k | k <- [1..4*n^2], let d = a000005 k, divMod k d == (n,0)] -- Reinhard Zumkeller, Dec 28 2011
-
Mathematica
a[n_] := Count[Table[n == k/DivisorSigma[0, k], {k, 1, 4*n^2}], True]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 22 2012 *)
Comments