cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051564 Second unsigned column of triangle A051523.

Original entry on oeis.org

0, 1, 21, 362, 6026, 101524, 1763100, 31813200, 598482000, 11752855200, 240947474400, 5154170774400, 114942011990400, 2669517204076800, 64496340380102400, 1619153396908185600, 42188624389562112000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=10) ~ exp(-x)/x^2*(1 - 21/x + 362/x^2 - 6026/x^3 + 101524/x^4 - 1763100/x^5 + 31813200/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.

Crossrefs

Cf. A049398 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k=2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Programs

  • Mathematica
    f[n_] := n!*Sum[(-1)^k*Binomial[-10, k]/(n - k), {k, 0, n - 1}]; Array[f, 17, 0]
    Range[0, 16]! CoefficientList[ Series[-Log[(1 - x)]/(1 - x)^10, {x, 0, 16}], x]
    (* Or, using elementary symmetric functions: *)
    f[k_] := k + 9; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051523(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^10.
a(n) = n!*Sum_{k=0..n-1}((-1)^k*binomial(-10,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[9]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011