cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051645 Primes p such that 30*p+1 is also prime.

Original entry on oeis.org

2, 5, 7, 11, 19, 23, 41, 43, 61, 67, 71, 79, 89, 109, 113, 131, 137, 167, 181, 193, 223, 229, 233, 277, 281, 313, 317, 331, 337, 359, 383, 439, 443, 457, 461, 467, 491, 503, 509, 541, 547, 593, 599, 607, 641, 691, 701, 733, 739, 743, 751, 769, 797, 821, 823
Offset: 1

Views

Author

Keywords

Comments

A002110(3)*p+1 and p are primes.

Examples

			p = 19 is in the sequence because 30*p+1 = 571 is also prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(900) | IsPrime(30*p+1)]; // Vincenzo Librandi, Apr 11 2013
    
  • Mathematica
    Select[Prime[Range[900]], PrimeQ[30 # + 1] &] (* Vincenzo Librandi, Apr 11 2013 *)
  • PARI
    isok(k) = isprime(k) && isprime(30*k+1); \\ Amiram Eldar, Feb 24 2025

Formula

a(n) = (A051646(n)-1)/30. - Amiram Eldar, Feb 24 2025

A051902 Minimal primorial safe primes: p and primorial*p + 1 are both primes.

Original entry on oeis.org

5, 13, 61, 421, 4621, 150151, 8678671, 106696591, 2454021571, 71166625531, 401120980261, 170676977100631, 2129751844690471, 562558737261811291, 11682905869181336791, 97767475431570134191, 9613801750771063195351, 234576762718813941966541, 55008250857561869391153631
Offset: 1

Views

Author

Labos Elemer, Dec 16 1999

Keywords

Comments

In A051888, 13 of the first 25 values are distinct, while here all corresponding min-primorial-safe-primes are different: {2,5,17,11,23,43,19,3,7,61,53,41,47}.

Examples

			The first five terms of A051887 are 2, so the first 5 terms have the form 1 + 2*A002110(n): 5, 13, 61, 421, 4621, which are smallest terms in A005385, A051644, A051646, A051648, A051649. The 6th term here is A051651(1) = A051887(6)*A002110(6) + 1 = 5*30030 + 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = 2, r =Times @@ Prime[Range[n]]}, While[!PrimeQ[p * r + 1], p = NextPrime[p]]; p * r + 1]; Array[a, 20] (* Amiram Eldar, Feb 25 2025 *)
  • PARI
    a(n) = {my(p = 2, r = vecprod(primes(n))); while(!isprime(p * r + 1), p = nextprime(p+1)); p * r + 1;} \\ Amiram Eldar, Feb 25 2025

Formula

a(n) = 1 + A002110(n)*A051887(n).
Showing 1-2 of 2 results.