A051652 Smallest number at distance n from nearest prime.
2, 1, 0, 26, 23, 118, 53, 120, 409, 532, 293, 1140, 211, 1340, 1341, 1342, 1343, 1344, 2179, 15702, 3967, 15704, 15705, 19632, 16033, 19634, 19635, 31424, 31425, 31426, 24281, 31428, 31429, 31430, 31431, 31432, 31433, 155958, 155959, 155960, 38501
Offset: 0
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..228 (terms 0..91 from _R. J. Mathar_)
- Michael S. Branicky, Python program
Crossrefs
Programs
-
Maple
A051700 := proc(m) option remember ; if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: A051652 := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = n then RETURN(m) ; fi ; od: fi ; end: for n from 0 to 79 do printf("%d %d\n",n,A051652(n)); od: # R. J. Mathar, Jul 22 2009
-
Mathematica
A051700[n_] := A051700[n] = Min[ NextPrime[n] - n, n - NextPrime[n, -1]]; a[n_] := For[m = 0, True, m++, If[A051700[m] == n, Return[m]]]; a[0] = 2; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 19 2011, after R. J. Mathar *) Join[{2,1,0},Drop[Flatten[Table[Position[Table[Min[NextPrime[n]-n, n-NextPrime[ n,-1]],{n,200000}],?(#==i&),{1},1],{i,40}]],2]] (* _Harvey P. Dale, Mar 16 2015 *)
-
Python
# see link for faster program from sympy import prevprime, nextprime def A051700(n): return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n) def a(n): if n == 0: return 2 m = 0 while A051700(m) != n: m += 1 return m print([a(n) for n in range(26)]) # Michael S. Branicky, Feb 27 2021
Extensions
More terms from James Sellers, Dec 07 1999