cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051676 Composite numbers whose square has a prime number of divisors.

Original entry on oeis.org

4, 8, 9, 25, 27, 32, 49, 64, 121, 125, 169, 243, 256, 289, 343, 361, 512, 529, 729, 841, 961, 1331, 1369, 1681, 1849, 2048, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12167
Offset: 1

Views

Author

Robert G. Wilson v, Nov 15 2001

Keywords

Comments

Also prime powers p^e with 2e+1 prime. - Charles R Greathouse IV, Sep 18 2015

Crossrefs

Subsequence of A246547 and hence of A025475.

Programs

  • Maple
    with(numtheory): A051676 := proc(n) option remember: local k: if(n=1)then return 4: fi: for k from procname(n-1)+1 do if(not isprime(k) and isprime(tau(k^2)))then return k: fi: od: end: seq(A051676(n),n=1..47); # Nathaniel Johnston, May 26 2011
  • Mathematica
    Select[Range[10^4], ! PrimeQ[ # ] && PrimeQ[DivisorSigma[0, #^2]] &]
  • PARI
    is(n)=my(e=isprimepower(n)); e>1 && isprime(2*e+1) \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    list(lim)=my(v=List(apply(p->p^2, primes(sqrtint(lim\=1)))),e); forprime(q=7,2*logint(lim,2)+1, e=q\2; forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) \\ Charles R Greathouse IV, Sep 18 2015