cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350014 Numbers whose square has a number of divisors coprime to 6.

Original entry on oeis.org

1, 4, 8, 9, 25, 27, 32, 36, 49, 64, 72, 100, 108, 121, 125, 169, 196, 200, 216, 225, 243, 256, 288, 289, 343, 361, 392, 441, 484, 500, 512, 529, 576, 675, 676, 729, 800, 841, 864, 900, 961, 968, 972, 1000, 1089, 1125, 1156, 1225, 1323, 1331, 1352, 1369, 1372, 1444
Offset: 1

Views

Author

Michael De Vlieger, Jan 17 2022

Keywords

Comments

a(n) = m in A001694 such that d(m^2) is not divisible by 3, where d(n) = A000005(n).
Supersequence of A051676 (composite numbers whose square has a prime number of divisors).
Subsequence of A001694 (powerful numbers).
Numbers whose prime factorization has only exponents that are congruent to {0, 2} mod 3 (A007494). - Amiram Eldar, Mar 31 2022

Crossrefs

Programs

  • Maple
    A350014 := proc(n)
        option remember ;
        local a;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                if igcd(numtheory[tau](a^2),6) = 1 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A350014(n),n=1..20) ; # R. J. Mathar, Apr 06 2022
  • Mathematica
    Select[Range[1500], CoprimeQ[DivisorSigma[0, #^2], 6] &] (* or *)
    With[{nn = 1500}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Mod[DivisorSigma[0, #^2], 3] != 0 &]]
  • PARI
    isok(m) = gcd(numdiv(m^2), 6) == 1; \\ Michel Marcus, Mar 04 2022

Formula

a(n) = {m : gcd(d(m^2), 6) = 1}.
Sum_{n>=1} 1/a(n) = 15*zeta(3)/Pi^2 (= 10 * A240976). - Amiram Eldar, Mar 31 2022

A283262 Numbers m such that tau(m^2) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Jaroslav Krizek, Mar 08 2017

Keywords

Comments

tau(m) is the number of positive divisors of m (A000005).
Numbers m such that A000005(A000290(m)) = A048691(m) is a prime.
Union of A000040 (primes) and A051676.
Supersequence of A055638 (sigma(m^2) is prime).
Subsequence of A000961 (powers of primes).
Prime powers p^e with 2e+1 prime (e >= 1).
See A061285(m) = the smallest number k such that tau(k^2) = m-th prime.

Examples

			tau(4^2) = tau(16) = 5 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] | IsPrime(NumberOfDivisors(n^2))];
    
  • Maple
    N:= 1000: # to get all terms <= N
    es:= select(t -> isprime(2*t+1), [$1..ilog2(N)]):
    Ps:= select(isprime, [2,seq(i,i=3..N,2)]):
    sort(select(`<=`, [seq(seq(p^e,e=es),p=Ps)],N)): # Robert Israel, Mar 16 2017
  • Mathematica
    Select[Range@ 227, PrimeQ[DivisorSigma[0, #^2]] &] (* Michael De Vlieger, Mar 09 2017 *)
  • PARI
    isok(n)=isprime(numdiv(n^2)) \\ Indranil Ghosh, Mar 09 2017
Showing 1-2 of 2 results.