cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051712 Numerator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 25, 13, 9, 7, 29, 5, 31, 4, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 2, 49, 25, 17, 13, 53, 9, 55, 7, 19, 29, 59, 5, 61, 31, 21, 8, 65, 11, 67, 17, 23, 35, 71, 3, 73
Offset: 1

Views

Author

Keywords

Examples

			0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
		

Crossrefs

Row 3 of table in A051714/A051715.

Programs

  • Mathematica
    b[n_] := n/((n + 1) (n + 2)); Numerator[-Differences[Array[b, 100]]]
    (* or *)
    f[p_, e_] := p^e; f[2, e_] := If[e < 3, 1, 2^(e - 3)]; f[3, e_] := 3^(e - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n - 1]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)

Formula

c(n) = a(n+1) is multiplicative with c(2^e) = 2^(e-3) if e > 2 and 1 otherwise, c(3^e) = 3^(e-1), and c(p^e) = p^e if p >= 5. [corrected by Amiram Eldar, Nov 20 2022]
Sum_{k=1..n} a(k) ~ (301/1152) * n^2. - Amiram Eldar, Nov 20 2022