cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A164848 a(n) = A026741(n)/A051712(n+1).

Original entry on oeis.org

1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Paul Curtz, Aug 28 2009

Keywords

Comments

Twice connected to Bernoulli numbers A164555/A027642 via the Akiyama-Tanigawa algorithm.
Conjecture (checked for the first 3000 entries): periodic with a(n+24)=a(n).
Is this a multiplicative function?
Multiplicative because both A026741 and A051712(n+1) are. - Andrew Howroyd, Jul 26 2018

Crossrefs

Programs

Formula

a(n) = gcd(12, n/gcd(2, n)). - Andrew Howroyd, Jul 26 2018
From Amiram Eldar, Oct 28 2023: (Start)
Multiplicative with a(2^3) = 2^min(e-1,2), a(3^e) = 3, and a(p^e) = 1 for a prime p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(2*s) + 1/2^(3*s-1)) * (1 + 2/3^s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. (End)

Extensions

Offset set to 1 by R. J. Mathar, Sep 06 2009

A051714 Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, -1, 1, 1, 2, 1, -1, 0, 1, 1, 5, 2, -3, -1, 1, 1, 1, 3, 5, -1, -1, 1, 0, 1, 1, 7, 5, 0, -4, 1, 1, -1, 1, 1, 4, 7, 1, -1, -1, 1, -1, 0, 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5, 1, 1, 5, 3, 8, -7, -9, 5, 7, -5, 5, 0, 1, 1, 11, 15, 27, -28, -343, 295, 200, -44, -1017, 691, -691
Offset: 0

Views

Author

Keywords

Comments

Leading column gives the Bernoulli numbers A164555/A027642. - corrected by Paul Curtz, Apr 17 2014

Examples

			Table begins:
   1     1/2   1/3    1/4   1/5  1/6  1/7 ...
   1/2   1/3   1/4    1/5   1/6  1/7 ...
   1/6   1/6   3/20   2/15  5/42 ...
   0     1/30  1/20   2/35  5/84 ...
  -1/30 -1/30 -3/140 -1/105 ...
Antidiagonals of numerator(a(n,k)):
  1;
  1,  1;
  1,  1,  1;
  1,  1,  1,  0;
  1,  1,  3,  1, -1;
  1,  1,  2,  1, -1,   0;
  1,  1,  5,  2, -3,  -1,  1;
  1,  1,  3,  5, -1,  -1,  1,  0;
  1,  1,  7,  5,  0,  -4,  1,  1, -1;
  1,  1,  4,  7,  1,  -1, -1,  1, -1,  0;
  1,  1,  9, 28, 49, -29, -5,  8,  1, -5,  5;
		

Crossrefs

Denominators are in A051715.

Programs

  • Magma
    function a(n,k)
      if n eq 0 then return 1/(k+1);
      else return (k+1)*(a(n-1,k) - a(n-1,k+1));
      end if;
    end function;
    A051714:= func< n,k | Numerator(a(n,k)) >;
    [A051714(k,n-k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 22 2023
    
  • Maple
    a:= proc(n,k) option remember;
          `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1)))
        end:
    seq(seq(numer(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
  • Mathematica
    nmax = 12; a[0, k_]:= 1/(k+1); a[n_, k_]:= a[n, k]= (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[Flatten[Table[a[n-k, k], {n,0,nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
  • SageMath
    def a(n,k):
        if (n==0): return 1/(k+1)
        else: return (k+1)*(a(n-1, k) - a(n-1, k+1))
    def A051714(n,k): return numerator(a(n, k))
    flatten([[A051714(k, n-k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 22 2023

Formula

From Fabián Pereyra, Jan 14 2023: (Start)
a(n,k) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)

Extensions

More terms from James Sellers, Dec 07 1999

A051715 Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
Offset: 0

Views

Author

Keywords

Comments

Leading column gives the Bernoulli numbers A027641/A027642.

Examples

			Table begins:
    1    1/2   1/3    1/4   1/5  1/6  1/7 ...
   1/2   1/3   1/4    1/5   1/6  1/7 ...
   1/6   1/6   3/20   2/15  5/42 ...
    0    1/30  1/20   2/35  5/84 ...
  -1/30 -1/30 -3/140 -1/105 ...
		

Crossrefs

Numerators are in A051714.

Programs

  • Maple
    a:= proc(n,k) option remember;
          `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1)))
        end:
    seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
  • Mathematica
    nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)

Formula

a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023

Extensions

More terms from James Sellers, Dec 08 1999

A045896 Denominator of n/((n+1)*(n+2)) = A026741/A045896.

Original entry on oeis.org

1, 6, 6, 20, 15, 42, 28, 72, 45, 110, 66, 156, 91, 210, 120, 272, 153, 342, 190, 420, 231, 506, 276, 600, 325, 702, 378, 812, 435, 930, 496, 1056, 561, 1190, 630, 1332, 703, 1482, 780, 1640, 861, 1806, 946, 1980, 1035, 2162, 1128, 2352, 1225, 2550, 1326, 2756, 1431
Offset: 0

Views

Author

Keywords

Comments

Also period length divided by 2 of pairs (a,b), where a has period 2*n-2 and b has period n.
From Paul Curtz, Apr 17 2014: (Start)
Difference table of A026741/A045896:
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/6, 0, -1/60, -1/60, -1/70, -1/84, ... = 1/6, -A051712/A051713
-1/6, -1/60, 0, 1/420, 1/420, 1/504, ...
3/20, 1/60, 1/420, 0, -1/2520, -1/2520, ...
-2/15, -1/70, -1/420, -1/2520, 0, 1/13860, ...
5/42, 1/84, 1/504, 1/2520, -1/13860, 0, ...
Autosequence of the first kind. The main diagonal is A000004. The first two upper diagonals are equal. Their denominators are A000911. (End)

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a045896 n = denominator $ n % ((n + 1) * (n + 2))
    -- Reinhard Zumkeller, Dec 12 2011
    
  • Maple
    seq((n+1)*(n+2)*(3-(-1)^n)/4, n=0..20); # C. Ronaldo
    with(combinat): seq(lcm(n+1,binomial(n+2,n)), n=0..50); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[LCM[2*n + 2, n + 2]/2, {n, 0, 40}] (* corrected by Amiram Eldar, Sep 14 2022 *)
    Denominator[#[[1]]/(#[[2]]#[[3]])&/@Partition[Range[0,60],3,1]] (* Harvey P. Dale, Aug 15 2013 *)
  • PARI
    Vec((2*x^3+3*x^2+6*x+1)/(1-x^2)^3+O(x^99)) \\ Charles R Greathouse IV, Mar 23 2016

Formula

G.f.: (2*x^3+3*x^2+6*x+1)/(1-x^2)^3.
a(n) = (n+1)*(n+2) if n odd; or (n+1)*(n+2)/2 if n even = (n+1)*(n+2)*(3-(-1)^n)/4. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 16 2004
a(2*n) = A000384(n+1); a(2*n+1) = A026741(n+1). - Reinhard Zumkeller, Dec 12 2011
Sum_{n>=0} 1/a(n) = 1 + log(2). - Amiram Eldar, Sep 11 2022
From Amiram Eldar, Sep 14 2022: (Start)
a(n) = lcm(2*n+2, n+2)/2.
a(n) = A045895(n+2)/2. (End)
E.g.f.: (2 + 8*x + x^2)*cosh(x)/2 + (2 + 2*x + x^2)*sinh(x). - Stefano Spezia, Apr 24 2024

A051713 Denominator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.

Original entry on oeis.org

1, 60, 60, 70, 84, 504, 120, 990, 165, 572, 1092, 2730, 280, 4080, 2448, 1938, 855, 7980, 1540, 10626, 3036, 4600, 7800, 17550, 819, 21924, 12180, 8990, 7440, 32736, 5984, 39270, 5355, 15540, 25308, 54834, 4940, 63960, 34440
Offset: 1

Views

Author

Keywords

Examples

			0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
		

Crossrefs

Cf. A051712. Row 3 of table in A051714/A051715.

Programs

  • Mathematica
    Denominator[#[[1]]-#[[2]]&/@(Partition[#[[1]]/(#[[2]]#[[3]])&/@Partition[ Range[50],3,1],2,1])] (* Harvey P. Dale, Nov 15 2014 *)
Showing 1-5 of 5 results.