cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A051718 Numerators of column 2 of table described in A051714/A051715.

Original entry on oeis.org

1, 1, 3, 1, -3, -1, 1, 1, 1, -5, -1017, 691, 601, -7, -809, 3617, 922191, -43867, -6132631, 174611, 12988703, -854513, -1552922421, 236364091, 1139644561, -8553103, -7089687053, 23749461029, 378639019356093, -8615841276005
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 29; a[0, k_] := 1/(k + 1); a[n_, k_] := a[n, k] = (k + 1)*(a[n - 1, k] - a[n - 1, k + 1]); Table[a[n, k], {n, 0, nmax}, {k, 0, nmax}] [[All, 3]] // Numerator (* Jean-François Alcover, Oct 08 2012 *)

Formula

a(n) = numerator(n! * [x^n] f(x)) where f(x) = -(x*exp(3*x))/(1-exp(x))^3+5/(2*(1-exp(x)))-1/(1-exp(x))^2-5/6. - Vladimir Kruchinin, Nov 03 2015

Extensions

More terms from James Sellers, Dec 08 1999

A051720 Numerators of column 3 of table described in A051714/A051715.

Original entry on oeis.org

1, 1, 2, 2, -1, -4, -1, 8, 7, -44, -2663, 368, 1247, -244, -1511, 43416, 1623817, -276356, -10405289, -21376, 21491081, 32209348, -2523785339, -107638072, 1827648887, 842271812, -11254630547, -17380760743952, 596303510772251
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A051721.

Programs

  • Mathematica
    a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); a[n_] := a[n, 3] // Numerator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Sep 17 2012 *)

Formula

a(n) = numerator(n! * [x^n] f(x)) where f(x) =(x*exp(4*x))/(1-exp(x))^4+13/(3*(1-exp(x)))-7/(2*(1-exp(x))^2)+1/(1-exp(x))^3-13/12. - Vladimir Kruchinin, Nov 03 2015

Extensions

More terms from James Sellers, Dec 08 1999

A051723 Denominators of row 4 of table described in A051714/A051715.

Original entry on oeis.org

30, 30, 140, 105, 1, 140, 3960, 495, 1430, 6006, 5460, 130, 7140, 2040, 5168, 14535, 11970, 14630, 15180, 5313, 6325, 89700, 23400, 6825, 142506, 7830, 125860, 53940, 40920, 92752, 628320, 6545, 6290, 442890, 329004, 45695, 151905, 223860, 493640
Offset: 0

Views

Author

Keywords

Examples

			-1/30 -1/30 -3/140 -1/105 0 ...
		

Crossrefs

Cf. A051722.

Extensions

More terms from James Sellers, Dec 08 1999

A051719 Denominators of column 2 of table described in A051714/A051715.

Original entry on oeis.org

3, 4, 20, 20, 140, 28, 140, 20, 220, 44, 20020, 1820, 1820, 4, 340, 340, 45220, 532, 29260, 220, 5060, 92, 41860, 1820, 1820, 4, 580, 580, 1384460, 9548, 811580, 340, 340, 4, 1279460, 1279460, 1279460, 4, 9020, 9020, 2715020, 1204, 138460, 460
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 43; a[0, k_] := 1/(k + 1); a[n_, k_] := a[n, k] = (k + 1)*(a[n - 1, k] - a[n - 1, k + 1]); Table[a[n, k], {n, 0, nmax}, {k, 0, nmax}] [[All, 3]] // Denominator (* Jean-François Alcover, Oct 08 2012 *)

Extensions

More terms from James Sellers, Dec 08 1999

A051721 Denominators of column 3 of table described in A051714/A051715.

Original entry on oeis.org

4, 5, 15, 35, 105, 105, 105, 165, 165, 455, 15015, 1365, 1365, 255, 255, 11305, 33915, 21945, 21945, 345, 3795, 10465, 31395, 1365, 1365, 435, 435, 346115, 1038345, 55335, 608685, 255, 255, 319865, 959595, 959595, 959595, 6765, 6765, 61705
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A051720.

Programs

  • Mathematica
    a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); a[n_] := a[n, 3] // Denominator; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Sep 17 2012 *)

Extensions

More terms from James Sellers, Dec 08 1999

A051722 Numerators of row 4 of table described in A051714/A051715.

Original entry on oeis.org

-1, -1, -3, -1, 0, 1, 49, 8, 27, 125, 121, 3, 169, 49, 125, 352, 289, 351, 361, 125, 147, 2057, 529, 152, 3125, 169, 2673, 1127, 841, 1875, 12493, 128, 121, 8381, 6125, 837, 2738, 3971, 8619, 1000, 1681, 1813, 35131, 1573, 3375, 21689, 2209, 4128, 26411
Offset: 0

Views

Author

Keywords

Examples

			-1/30 -1/30 -3/140 -1/105 0 ...
		

Crossrefs

Cf. A051723.

Extensions

More terms from James Sellers, Dec 08 1999

A194531 Numerator of row 4 in A051714(n) or row 3 in A176672(n).

Original entry on oeis.org

0, 1, 1, 2, 5, 5, 7, 28, 3, 15, 55, 22, 13, 91, 35, 40, 34, 51, 57, 190, 35, 77, 253, 92, 25, 325, 117, 126, 203, 145, 155, 496, 44, 187, 595, 210, 111, 703, 247, 260, 205, 287, 301, 946, 165, 345, 1081, 376, 98, 1225, 425
Offset: 0

Views

Author

Paul Curtz, Aug 28 2011

Keywords

Comments

Akiyama-Tanigawa algorithm from 1/n leads to Bernoulli A164555(n)/A027642(n):
1, 1/2, 1/3, 1/4,
1/2, 1/3, 1/4, 1/5,
1/6, 1/6, 3/20, 2/15, =A026741(n+1)/A045896(n+1),
0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495 =a(n)/b(n).

Crossrefs

Cf. A193220 (denominators).

Programs

  • Mathematica
    a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); Table[a[3, k], {k, 0, 50}] // Numerator (* Jean-François Alcover, Sep 19 2012 *)

A051717 1, followed by denominators of first differences of Bernoulli numbers (B(i)-B(i-1)).

Original entry on oeis.org

1, 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, 2730, 6, 6, 510, 510, 798, 798, 330, 330, 138, 138, 2730, 2730, 6, 6, 870, 870, 14322, 14322, 510, 510, 6, 6, 1919190, 1919190, 6, 6, 13530, 13530, 1806, 1806, 690, 690, 282, 282, 46410, 46410, 66, 66, 1590, 1590
Offset: 0

Views

Author

Keywords

Comments

Equivalently, denominators of Bernoulli twin numbers C(n) (cf. A051716).
The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n) + B(2n-1), C(2n+1) = -B(2n+1) - B(2n), where B() are the Bernoulli numbers A027641/A027642. The definition is due to Paul Curtz.
Denominators of column 1 of table described in A051714/A051715.

Examples

			Bernoulli numbers: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
First differences: -3/2, 2/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
Numerators: -3, 2, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, ...
Denominators: 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, ...
Sequence of C(n)'s begins: 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
		

Crossrefs

Cf. A129724.
For numerators see A172083.

Programs

  • Magma
    f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
    function A051717(n)
      if n eq 0 then return 1;
      elif (n mod 2) eq 0 then return Denominator(f(n));
      else return Denominator(-f(n));
      end if;
    end function;
    [A051717(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
    
  • Maple
    C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
  • Mathematica
    c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Denominator[c[n]], {n,0,53}] (* Jean-François Alcover, Dec 19 2011 *)
    Join[{1},Denominator[Total/@Partition[BernoulliB[Range[0,60]],2,1]]] (* Harvey P. Dale, Mar 09 2013 *)
    Join[{1},Denominator[Differences[BernoulliB[Range[0,60]]]]] (* Harvey P. Dale, Jun 28 2021 *)
  • PARI
    a(n)=if(n<3,n+1,denominator(bernfrac(n)-bernfrac(n-1))) \\ Charles R Greathouse IV, May 18 2015
    
  • SageMath
    def f(n): return bernoulli(n)+bernoulli(n-1)
    def A051717(n):
        if (n==0): return 1
        elif (n%2==0): return denominator(f(n))
        else: return denominator(-f(n))
    [A051717(n) for n in range(51)] # G. C. Greubel, Apr 22 2023

Extensions

More terms from James Sellers, Dec 08 1999
Edited by N. J. A. Sloane, May 25 2008
Entry revised by N. J. A. Sloane, Apr 22 2021

A051716 Numerators of Bernoulli twin numbers C(n).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367
Offset: 0

Views

Author

Keywords

Comments

The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n) + B(2n-1), C(2n+1) = -B(2n+1) - B(2n), where B() are the Bernoulli numbers A027641/A027642. The definition is due to Paul Curtz.
For denominators see A051717.
Negatives of numerators of column 1 of table described in A051714/A051715.

Examples

			The C(n) sequence is 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
		

Crossrefs

Programs

  • Magma
    f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
    function A051716(n)
      if n eq 0 then return 1;
      elif (n mod 2) eq 0 then return Numerator(f(n));
      else return Numerator(-f(n));
      end if;
    end function;
    [A051716(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
    
  • Maple
    C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
  • Mathematica
    c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Numerator[c[n]], {n,0,34}] (* Jean-François Alcover, Dec 19 2011 *)
  • PARI
    a(n) = if (n==0, 1, nu = numerator(bernfrac(n)+bernfrac(n-1)); if (n%2, -nu, nu)); \\ Michel Marcus, Jan 29 2017
    
  • SageMath
    def f(n): return bernoulli(n)+bernoulli(n-1)
    def A051716(n):
        if (n==0): return 1
        elif (n%2==0): return numerator(f(n))
        else: return numerator(-f(n))
    [A051716(n) for n in range(51)] # G. C. Greubel, Apr 22 2023

Formula

Numerators of differences of the sequence of rational numbers 0 followed by A164555/A027642. - Paul Curtz, Jan 29 2017
The e.g.f. of the rationals a(n)/A051717(n) is -(1/x + x^2/2 + x/(1 - exp(x)) + dilog(exp(-x))), (with dilog(x) = polylog(2, 1-x)). From integrating the e.g.f. of the z-sequence (exp(x) - (1+x))/(exp(x) -1)^2 for the Bernoulli polynomials of the second kind (A290317 / A290318). - Wolfdieter Lang, Aug 07 2017

Extensions

More terms from James Sellers, Dec 08 1999
Edited by N. J. A. Sloane, May 25 2008

A051715 Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
Offset: 0

Views

Author

Keywords

Comments

Leading column gives the Bernoulli numbers A027641/A027642.

Examples

			Table begins:
    1    1/2   1/3    1/4   1/5  1/6  1/7 ...
   1/2   1/3   1/4    1/5   1/6  1/7 ...
   1/6   1/6   3/20   2/15  5/42 ...
    0    1/30  1/20   2/35  5/84 ...
  -1/30 -1/30 -3/140 -1/105 ...
		

Crossrefs

Numerators are in A051714.

Programs

  • Maple
    a:= proc(n,k) option remember;
          `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1)))
        end:
    seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
  • Mathematica
    nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)

Formula

a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023

Extensions

More terms from James Sellers, Dec 08 1999
Showing 1-10 of 21 results. Next