cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105450 a(n) = binomial(n+5,6) + binomial(n+3,3) + binomial(n+2,3) + binomial(n-1,1).

Original entry on oeis.org

0, 6, 22, 60, 142, 305, 607, 1134, 2008, 3396, 5520, 8668, 13206, 19591, 28385, 40270, 56064, 76738, 103434, 137484, 180430, 234045, 300355, 381662, 480568, 600000, 743236, 913932, 1116150, 1354387, 1633605, 1959262, 2337344, 2774398, 3277566, 3854620
Offset: 0

Views

Author

D. G. Rogers, May 07 2005

Keywords

Comments

Number of directed column-convex polyominoes with perimeter 2(n+4) having n cells in the foundational column.
A051743 and this sequence form successive diagonals in an array that has as row sums the sequence A006027.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n+5,6]+Binomial[n+3,3]+Binomial[n+2,3]+ Binomial[n-1,1],{n,0,50}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,6,22,60,142,305,607},51] (* Harvey P. Dale, Jun 28 2011 *)
  • PARI
    a(n)=n*(n^5+15*n^4+85*n^3+465*n^2+1354*n+2400)/720 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(0)=0, a(1)=6, a(2)=22, a(3)=60, a(4)=142, a(5)=305, a(6)= 607, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Jun 28 2011
G.f.: (2*x^6-11*x^5+26*x^4-32*x^3+20*x^2-6*x)/(x-1)^7. - Harvey P. Dale, Jun 28 2011

A118923 Triangle T(n,k) built by placing T(n,0)=A000012(n) in the left edge, T(n,n)=A079978(n) on the right edge and filling the body with the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 3, 3, 2, 0, 1, 4, 6, 5, 2, 0, 1, 5, 10, 11, 7, 2, 1, 1, 6, 15, 21, 18, 9, 3, 0, 1, 7, 21, 36, 39, 27, 12, 3, 0, 1, 8, 28, 57, 75, 66, 39, 15, 3, 1, 1, 9, 36, 85, 132, 141, 105, 54, 18, 4, 0, 1, 10, 45, 121, 217, 273, 246, 159, 72, 22, 4, 0, 1, 11, 55, 166
Offset: 0

Views

Author

Alford Arnold, May 05 2006

Keywords

Comments

The fourth diagonal is 1, 2, 5, 11, 21, ..., which is 1 + A000292. The fifth diagonal is 0, 2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, ..., which is A051743.
The array A007318 is generated by placing A000012 on both edges with the same Pascal-like recurrence, and the array A059259 uses edges defined by A000012 and A059841. - R. J. Mathar, Jan 21 2008
From Michael A. Allen, Nov 30 2021: (Start)
T(n,n-k) is the (n,k)-th entry of the (1/(1-x^3), x/(1-x)) Riordan array.
Sums of rows give A077947.
Sums of antidiagonals give A079962. (End)

Examples

			The table begins
  1
  1  0
  1  1  0
  1  2  1  1
  1  3  3  2  0
  1  4  6  5  2  0
  1  5 10 11  7  2  1
  1  6 15 21 18  9  3  0
		

Crossrefs

Programs

  • Maple
    A000012 := proc(n) 1 ; end: A079978 := proc(n) if n mod 3 = 0 then 1; else 0 ; fi ; end: A118923 := proc(n,k) if k = 0 then A000012(n); elif k = n then A079978(n) ; else A118923(n-1,k)+A118923(n-1,k-1) ; fi ; end: for n from 0 to 15 do for k from 0 to n do printf("%d, ",A118923(n,k)) ; od: od: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten@Table[CoefficientList[Series[1/((1 + x*y + x^2*y^2)(1 - x - x*y)), {x, 0, 23}, {y, 0, 11}], {x, y}][[n + 1, k + 1]], {n, 0, 11}, {k, 0, n}] (* Michael A. Allen, Nov 30 2021 *)

Formula

From Michael A. Allen, Nov 30 2021: (Start)
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/3)} binomial(n-3*j,n-k)/(n-3*j).
G.f.: 1/((1+x*y+(x*y)^2)*(1-x-x*y)). (End)

Extensions

Edited and extended by R. J. Mathar, Jan 21 2008
Offset changed by Michael A. Allen, Nov 30 2021
Showing 1-2 of 2 results.