cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051762 Polygon circumscribing constant: decimal expansion of Product_{n>=3} 1/cos(Pi/n).

Original entry on oeis.org

8, 7, 0, 0, 0, 3, 6, 6, 2, 5, 2, 0, 8, 1, 9, 4, 5, 0, 3, 2, 2, 2, 4, 0, 9, 8, 5, 9, 1, 1, 3, 0, 0, 4, 9, 7, 1, 1, 9, 3, 2, 9, 7, 9, 4, 9, 7, 4, 2, 8, 9, 2, 0, 9, 2, 1, 5, 9, 6, 6, 7, 2, 7, 8, 6, 8, 3, 4, 2, 9, 9, 6, 4, 1, 1, 4, 0, 2, 5, 1, 5, 9, 1, 1, 8, 5, 4, 4, 4, 1, 4, 0, 0, 9, 2, 4, 9, 5, 2, 8, 5, 5, 0, 3, 7
Offset: 1

Views

Author

Robert G. Wilson v, Aug 23 2000

Keywords

Comments

The geometric interpretation is as follows. Begin with a unit circle. Circumscribe an equilateral triangle and then circumscribe a circle. Circumscribe a square and then circumscribe a circle. Circumscribe a regular pentagon and then circumscribe a circle, etc. The circles have radius which converges to this value.
Grimstone corrects an error in other references and gives an approximation for 1/A085365, see there for further information. - M. F. Hasler, May 18 2014

Examples

			8.700036625208194503222409859113004971193297949742892092159667278683429964114...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.3, p. 428.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 382.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 757, section 6.2.4, formula 1.

Crossrefs

Programs

  • Maple
    evalf(product(sec(Pi/k), k=3..infinity), 103) # Vaclav Kotesovec, Sep 20 2014
  • Mathematica
    (* A check of the calculation can be made by dividing the product into two halves, a = N[Product[1/Cos[Pi/(2 n + 1)], {n, 1, Infinity}],111], b = N[Product[1/Cos[Pi/(2 n)], {n, 2, Infinity}],111] and a*b = A051762. - Robert G. Wilson v, Dec 22 2013 *) [This approach turns out to give incorrect numerical results. - M. F. Hasler, Sep 20 2014]
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[-(2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* over 100 decimal places are correct, Vaclav Kotesovec, Sep 20 2014 *)
  • PARI
    exp(-sumpos(n=3,log(cos(Pi/n)))) \\ Converges very quickly, which is not the case for suminf(...) or prodinf(cos(Pi/n)). \\ M. F. Hasler, May 18 2014

Formula

Equals 1/A085365.

Extensions

More terms from Eric W. Weisstein, Jun 25 2003
Edited by M. F. Hasler, May 18 2014
Example corrected by Vaclav Kotesovec, Sep 20 2014