cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083235 First differences of A063742, the possible values for cototients.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Comments

Differences between consecutive numbers in the range of A051853.

Examples

			First missing number in A063742 is 10=A005278[1], so a[10]=2 is the first difference here > 1.
		

Programs

  • Mathematica
    t0[x_] := Table[j, {j, 1, x}] t=Table[w-EulerPhi[w], {w, 1, 10000}]; u=Union[%]; Delete[u-RotateRight[u], 1]

Formula

a(n) = A063742(n+1) - A063742(n).

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 23 2007

A051854 Table of solutions to all possible Chinese Remainder Equations x = a1 mod p1, x = a2 mod p2, ..., x = an mod pn, where p1 - pn are the first n primes and each a1 - an varies between 1 and (its respective) p-1, with the rightmost a (an) varying fastest.

Original entry on oeis.org

1, 1, 5, 1, 7, 13, 19, 11, 17, 23, 29, 1, 121, 31, 151, 61, 181, 127, 37, 157, 67, 187, 97, 43, 163, 73, 193, 103, 13, 169, 79, 199, 109, 19, 139, 71, 191, 101, 11, 131, 41, 197, 107, 17, 137, 47, 167, 113, 23, 143, 53, 173, 83, 29, 149, 59, 179, 89, 209, 1, 211, 421
Offset: 1

Views

Author

Antti Karttunen, Dec 13 1999

Keywords

Examples

			Rows have lengths 1,2,8,48,480,5760,92160,... (A005867(n)) and terms 1; 1,5; 1,7,13,19,11,17,23,29;
		

Crossrefs

Cf. A051853.

Programs

  • Maple
    with(numtheory); incr_plist_from_right := proc(aa) local i,n,a; a := aa; n := nops(a); for i from n by -1 to 1 do if(a[i] < (ithprime(i)-1)) then a[i] := a[i]+1; RETURN(a); else a[i] := 1; fi; od; RETURN([op(a),1]); end;
    incr_plist_from_right_n_times := proc(aa,n) local a,i; a := aa; for i from 1 to n do a := incr_plist_from_right(a); od; RETURN(a); end; prim_chrem_right := proc(n) local r,m; r := incr_plist_from_right_n_times([],n); m := form_modlist(r); RETURN(chrem(r,m)); end; # For form_modlist see A051853.
  • Mathematica
    row[n_] := Module[{i}, pp = Prime[Range[n]]; iter = Sequence @@ Table[{ i[k], 1, pp[[k]] - 1}, {k, 1, n}]; Table[ChineseRemainder[Array[i, n], pp], iter // Evaluate] // Flatten]; Table[row[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Mar 06 2016 *)

Formula

a(n) = prim_chrem_right(n) (see Maple code)
Showing 1-2 of 2 results.