cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051900 Minimal 2^n safe-primes: a(n) = 2^n*A051886(n) + 1 (a prime number).

Original entry on oeis.org

3, 5, 13, 17, 113, 97, 193, 257, 769, 11777, 13313, 59393, 12289, 40961, 114689, 65537, 2424833, 6946817, 786433, 5767169, 7340033, 23068673, 155189249, 595591169, 1224736769, 167772161, 469762049, 2281701377, 3489660929, 12348030977, 3221225473
Offset: 0

Views

Author

Labos Elemer, Dec 16 1999

Keywords

Comments

Equivalently, a(n) is the smallest prime p such that (p-1)/gpf(p-1) = 2^n where gpf(m) is the greatest prime factor of m, A006530. Subsequence of A074781, primes p such that the ratio (p-1)/gpf(p-1) = 2^k. - Bernard Schott, Dec 14 2020

Examples

			1 + 2^11*A051886(11) = 2048*29 + 1 = 59393 = a(11) is the smallest q prime so that (q-1)/2048 is also a (minimal, generalized Germain-) prime. The 101st term is 2385718429629527733616795432517633 = 1 + (2^101)*941.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.

Crossrefs

Programs

  • Maple
    alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
    a := proc(n) local p, q; q := 2^n; p := 2;
       while (p-1) <> gpf(p-1)*q
       do p := nextprime(p) od;
    p end: seq(a(n), n=0..14); # Peter Luschny, Dec 14 2020
  • Mathematica
    f[n_] := Block[{e = IntegerExponent[n - 1, 2]}, g = (n - 1)/2^e; If[g == 1, e - 1, If[ PrimeQ[g], e, -1]]]; t = Table[0, {50}]; p = 3; While[p < 13000000000, a = f@ p; If[t[[a + 1]] == 0, t[[a + 1]] = p; Print[{a, p}]]; p = NextPrime@ p]; t  (* Robert G. Wilson v, Jun 17 2012 *)
    f[n_] := Block[{k = 1}, While[ !PrimeQ[2^n*Prime[k] + 1], k++]; 2^n*Prime[k] + 1]; Array[f, 32, 0] (* Robert G. Wilson v, Jun 17 2012 *)

Extensions

Name clarified by Joerg Arndt, Jun 18 2012
Offset changed to 0 and a(0) prepended by Amiram Eldar, Feb 28 2025