A051900 Minimal 2^n safe-primes: a(n) = 2^n*A051886(n) + 1 (a prime number).
3, 5, 13, 17, 113, 97, 193, 257, 769, 11777, 13313, 59393, 12289, 40961, 114689, 65537, 2424833, 6946817, 786433, 5767169, 7340033, 23068673, 155189249, 595591169, 1224736769, 167772161, 469762049, 2281701377, 3489660929, 12348030977, 3221225473
Offset: 0
Keywords
Examples
1 + 2^11*A051886(11) = 2048*29 + 1 = 59393 = a(11) is the smallest q prime so that (q-1)/2048 is also a (minimal, generalized Germain-) prime. The 101st term is 2385718429629527733616795432517633 = 1 + (2^101)*941.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..1000
Programs
-
Maple
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)): a := proc(n) local p, q; q := 2^n; p := 2; while (p-1) <> gpf(p-1)*q do p := nextprime(p) od; p end: seq(a(n), n=0..14); # Peter Luschny, Dec 14 2020
-
Mathematica
f[n_] := Block[{e = IntegerExponent[n - 1, 2]}, g = (n - 1)/2^e; If[g == 1, e - 1, If[ PrimeQ[g], e, -1]]]; t = Table[0, {50}]; p = 3; While[p < 13000000000, a = f@ p; If[t[[a + 1]] == 0, t[[a + 1]] = p; Print[{a, p}]]; p = NextPrime@ p]; t (* Robert G. Wilson v, Jun 17 2012 *) f[n_] := Block[{k = 1}, While[ !PrimeQ[2^n*Prime[k] + 1], k++]; 2^n*Prime[k] + 1]; Array[f, 32, 0] (* Robert G. Wilson v, Jun 17 2012 *)
Extensions
Name clarified by Joerg Arndt, Jun 18 2012
Offset changed to 0 and a(0) prepended by Amiram Eldar, Feb 28 2025
Comments